{"title":"Experimental investigation on dynamic characteristics of methane/air combustion in double-layer pellets porous media","authors":"Hui Wang, Ning Wang, Guangshun Wang, Xiangyu Wang, Xiang Liu, Yuxuan Zhu","doi":"10.1002/apj.3059","DOIUrl":null,"url":null,"abstract":"<p>The double-layer porous media burner is considered as an effective way to realize stable lean-burn. In order to quickly achieve a stable combustion state in a double-layer porous media burner, this work investigated the dynamic characteristics of methane/air premixed combustion in a bench-scale double-layer porous media burnspanning from ignition to stable combustion and ultimately flameout. The experimental results indicate that regulating the equivalence ratio and the inlet velocity enables the establishment of a stable flame front and the φ = 0.75 and the <i>V</i><sub>in</sub> = 0.20 m/s are the appropriate start-up conditions. The average propagation velocity of the combustion wave variation along the axial direction and ranged approximately from −0.022 to −0.078 mm/s. Moreover, the transition time to a stable combustion state is reduced by nearly 47.14% as the equivalence ratio increases from 0.60 to 0.70. During start-up stage, there are significant fluctuations in CO and NOx concentrations, but both emissions remain low during steady combustion state, with the maximum concentrations of 37.5 and 40.2 mg/m<sup>3</sup>, respectively. Furthermore, the porous media combustion exhibits a pronounced re-ignition capacity. At higher equivalence ratios, longer interruptions of premixed gas are allowed.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The double-layer porous media burner is considered as an effective way to realize stable lean-burn. In order to quickly achieve a stable combustion state in a double-layer porous media burner, this work investigated the dynamic characteristics of methane/air premixed combustion in a bench-scale double-layer porous media burnspanning from ignition to stable combustion and ultimately flameout. The experimental results indicate that regulating the equivalence ratio and the inlet velocity enables the establishment of a stable flame front and the φ = 0.75 and the Vin = 0.20 m/s are the appropriate start-up conditions. The average propagation velocity of the combustion wave variation along the axial direction and ranged approximately from −0.022 to −0.078 mm/s. Moreover, the transition time to a stable combustion state is reduced by nearly 47.14% as the equivalence ratio increases from 0.60 to 0.70. During start-up stage, there are significant fluctuations in CO and NOx concentrations, but both emissions remain low during steady combustion state, with the maximum concentrations of 37.5 and 40.2 mg/m3, respectively. Furthermore, the porous media combustion exhibits a pronounced re-ignition capacity. At higher equivalence ratios, longer interruptions of premixed gas are allowed.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).