{"title":"Research on the influence of aeration manners on the mass transfer characteristics of bubbles in multi-column airlift photobioreactor","authors":"Shuangcheng Fu, Chenxi Liu, Faqi Zhou, Tao Yu, Kewei Li, Yue Zhang, Shenghu Yan, Xiang Zhang","doi":"10.1002/apj.3068","DOIUrl":null,"url":null,"abstract":"<p>Mass transfer of bubbles is important in microalgae cultivation. In this study, aiming to improve the microalgae culturing efficiency, computational fluid dynamics (CFD) was adopted to study the influence of the aeration manners on mass transfer of bubbles within ascending columns in multi-column airlift photobioreactor (PBR) and the hydrodynamic conditions within the PBR under different aeration manners. In addition, the bubble generation time, the detachment diameter, and the average volumetric mass transfer coefficient of bubbles in ascending columns were analyzed. Furthermore, the experimental results were compared with the simulation results obtained from microalgae cultivation. The results showed that the whole aeration manner yields the lowest mixing strength and mass transfer efficiency of bubbles at an aeration rate of 0.2 vvm. Conversely, both the mixing strength of the liquid and mass transfer coefficient of bubbles were enhanced under the half and alternate aeration manners. However, the results demonstrated that the distribution of the flow field was not uniform under the half aeration manner and there were obvious high-speed and low-speed zones. In contrast, the flow field distribution in the PBR was more uniform under the alternate aeration manner, which was suitable for microalgae cultivation at high concentration. This study effectively enhanced the mixing strength and CO<sub>2</sub> transfer rate in the PBR.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mass transfer of bubbles is important in microalgae cultivation. In this study, aiming to improve the microalgae culturing efficiency, computational fluid dynamics (CFD) was adopted to study the influence of the aeration manners on mass transfer of bubbles within ascending columns in multi-column airlift photobioreactor (PBR) and the hydrodynamic conditions within the PBR under different aeration manners. In addition, the bubble generation time, the detachment diameter, and the average volumetric mass transfer coefficient of bubbles in ascending columns were analyzed. Furthermore, the experimental results were compared with the simulation results obtained from microalgae cultivation. The results showed that the whole aeration manner yields the lowest mixing strength and mass transfer efficiency of bubbles at an aeration rate of 0.2 vvm. Conversely, both the mixing strength of the liquid and mass transfer coefficient of bubbles were enhanced under the half and alternate aeration manners. However, the results demonstrated that the distribution of the flow field was not uniform under the half aeration manner and there were obvious high-speed and low-speed zones. In contrast, the flow field distribution in the PBR was more uniform under the alternate aeration manner, which was suitable for microalgae cultivation at high concentration. This study effectively enhanced the mixing strength and CO2 transfer rate in the PBR.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).