{"title":"Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces","authors":"Fangqin Lu, Lingyun Liu, Chuilei Kong, Hongyu Zhao","doi":"10.1002/apj.3074","DOIUrl":null,"url":null,"abstract":"<p>Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral <span></span>Si<span></span>O layer and octahedral <span></span>Al<span></span>O layer of kaolinite, in contrast to quartz, which contains only the tetrahedral <span></span>Si<span></span>O layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral SiO layer and octahedral AlO layer of kaolinite, in contrast to quartz, which contains only the tetrahedral SiO layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.