Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangqin Lu, Lingyun Liu, Chuilei Kong, Hongyu Zhao
{"title":"Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces","authors":"Fangqin Lu,&nbsp;Lingyun Liu,&nbsp;Chuilei Kong,&nbsp;Hongyu Zhao","doi":"10.1002/apj.3074","DOIUrl":null,"url":null,"abstract":"<p>Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral <span></span>Si<span></span>O layer and octahedral <span></span>Al<span></span>O layer of kaolinite, in contrast to quartz, which contains only the tetrahedral <span></span>Si<span></span>O layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral SiO layer and octahedral AlO layer of kaolinite, in contrast to quartz, which contains only the tetrahedral SiO layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.

加强煤泥加工:研究十二烷基磺酸钠在高岭石表面的吸附效果
针对煤泥中细小高岭石和石英颗粒的加工问题,本研究利用分子模拟和密度泛函理论(DFT)研究了十二烷基硫酸钠(SDS)在高岭石表面的螯合吸附特性。作为煤泥中的一种主要粘土矿物成分,高岭石降低了煤的热值,但在工业和农业应用方面却具有潜力。研究发现,SDS 与高岭石的四面体 SiO 层和八面体 AlO 层之间有明显的相互作用,而石英只含有四面体 SiO 层。这种差异对于有效分离高岭石和石英至关重要。研究重点分析了 SDS 在高岭石 (001) 和 (00-1) 平面上的吸附情况。研究结果表明,SDS 在高岭石表面,尤其是在(001)平面上有很强的吸附作用,电荷转移明显,表明其具有高效的螯合作用。这种效应是 SDS 的电子捐赠原子(如 S 和 O)与高岭石表面的金属原子相互作用的结果。通过吸附能计算对吸附强度进行了量化,结果表明(001)表面的吸附作用更强。实验验证(包括单矿物浮选实验和红外光谱分析)进一步证实了模拟结果。这些测试表明,在 SDS 的存在下,高岭石的浮选回收率有所提高,粒度也有所减小。红外分析表明,傅立叶变换红外光谱中羟基伸缩振动减弱,与无机振动和磺酸基团相关的吸收峰发生变化,这表明 SDS 可选择性地强烈吸附在高岭石表面。这项研究表明,SDS 可以选择性地有效吸附在高岭石表面,尤其是 (001) 平面上,从而促进从煤泥中高效提取细高岭石。这项研究为提高煤炭工业对煤泥资源的利用提供了巨大潜力,同时带来了经济和环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信