{"title":"Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces","authors":"Fangqin Lu, Lingyun Liu, Chuilei Kong, Hongyu Zhao","doi":"10.1002/apj.3074","DOIUrl":null,"url":null,"abstract":"<p>Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral <span></span>Si<span></span>O layer and octahedral <span></span>Al<span></span>O layer of kaolinite, in contrast to quartz, which contains only the tetrahedral <span></span>Si<span></span>O layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the issue of processing fine kaolinite and quartz particles in coal slime, this study utilized molecular simulation and Density Functional Theory (DFT) to investigate the chelate adsorption characteristics of sodium dodecyl sulfate (SDS) on kaolinite surfaces. As a major clay mineral component in coal slime, kaolinite reduces coal's calorific value but holds potential for industrial and agricultural applications. The research identified distinct interactions between SDS and the tetrahedral SiO layer and octahedral AlO layer of kaolinite, in contrast to quartz, which contains only the tetrahedral SiO layer. This difference is crucial for the effective separation of kaolinite from quartz. The study focused on analyzing SDS adsorption on the (001) and (00-1) planes of kaolinite. The findings revealed strong adsorption of SDS on kaolinite surfaces, especially on the (001) plane, evidenced by significant charge transfer indicating efficient chelation. This effect results from the interaction of SDS's electron-donating atoms (such as S and O) with the metal atoms on the surface of kaolinite. Adsorption strength was quantified through adsorption energy calculations, showing a stronger interaction on the (001) surface. Experimental validations, including single mineral flotation experiments and infrared spectroscopic analysis, further corroborated the simulation outcomes. These tests demonstrated improved flotation recovery of kaolinite in the presence of SDS and with reduced particle size. Infrared analysis revealed that SDS selectively and strongly adsorbs on kaolinite surfaces, as indicated by diminished hydroxyl group stretching vibrations in the FTIR spectrum and changes in absorption peaks related to inorganic vibrations and sulfonic acid groups. The study demonstrates that SDS can selectively and effectively adsorb onto kaolinite surfaces, particularly on the (001) plane, facilitating the efficient extraction of fine kaolinite from coal slime. This research holds significant potential for enhancing the utilization of resources from coal slime in the coal industry, offering both economic and environmental benefits.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).