{"title":"Confinement of N-Body Systems and Non-integer Dimensions","authors":"E. Garrido, A. S. Jensen","doi":"10.1007/s00601-024-01906-4","DOIUrl":null,"url":null,"abstract":"<div><p>The squeezing process of a three-dimensional quantum system by use of an external deformed one-body oscillator potential can also be described by the <i>d</i>-method, without external field and where the dimension can take non-integer values. In this work we first generalize both methods to <i>N</i> particles and any transition between dimensions below 3. Once this is done, the use of harmonic oscillator interactions between the particles allows complete analytic solutions of both methods, and a direct comparison between them is possible. Assuming that both methods describe the same process, leading to the same ground state energy and wave function, an analytic equivalence between the methods arises. The equivalence between both methods and the validity of the derived analytic relation between them is first tested for two identical bosons and for squeezing transitions from 3 to 2 and 1 dimensions, as well as from 2 to 1 dimension. We also investigate the symmetric squeezing from 3 to 1 dimensions of a system made of three identical bosons. We have in all the cases found that the derived analytic relations between the two methods work very well. This fact permits to relate both methods also for large squeezing scenarios, where the brute force numerical calculation with the external field is too much demanding from the numerical point of view, especially for systems with more than two particles.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-024-01906-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01906-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The squeezing process of a three-dimensional quantum system by use of an external deformed one-body oscillator potential can also be described by the d-method, without external field and where the dimension can take non-integer values. In this work we first generalize both methods to N particles and any transition between dimensions below 3. Once this is done, the use of harmonic oscillator interactions between the particles allows complete analytic solutions of both methods, and a direct comparison between them is possible. Assuming that both methods describe the same process, leading to the same ground state energy and wave function, an analytic equivalence between the methods arises. The equivalence between both methods and the validity of the derived analytic relation between them is first tested for two identical bosons and for squeezing transitions from 3 to 2 and 1 dimensions, as well as from 2 to 1 dimension. We also investigate the symmetric squeezing from 3 to 1 dimensions of a system made of three identical bosons. We have in all the cases found that the derived analytic relations between the two methods work very well. This fact permits to relate both methods also for large squeezing scenarios, where the brute force numerical calculation with the external field is too much demanding from the numerical point of view, especially for systems with more than two particles.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).