Influence of Discretization Error on the HAL QCD Baryon Forces

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Takashi Inoue, HAL QCD Collaboration
{"title":"Influence of Discretization Error on the HAL QCD Baryon Forces","authors":"Takashi Inoue,&nbsp;HAL QCD Collaboration","doi":"10.1007/s00601-024-01908-2","DOIUrl":null,"url":null,"abstract":"<div><p>We studied influence of lattice discretization on a HAL QCD two-baryon force. We have carried out 3-flavor lattice QCD numerical calculations at a same quark mass with three different values of lattice spacing. We extracted a potential of interaction in the flavor singlet S-wave two-baryon sector, and drew out binding energy of a bound state in the sector, the H-dibaryon. It turned out that the qualitative nature of the interaction does not change at all, while strength of the interaction change considerably with respect to change of lattice spacing <i>a</i> at <i>a</i> around 0.1 [fm]. Accordingly, binding energy of the H-dibaryon depends to the lattice spacing. This result is consistent to that reported by Mainz lattice QCD group. This issue may indicate a challenging point common to lattice QCD studies of multi-hadron systems.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01908-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We studied influence of lattice discretization on a HAL QCD two-baryon force. We have carried out 3-flavor lattice QCD numerical calculations at a same quark mass with three different values of lattice spacing. We extracted a potential of interaction in the flavor singlet S-wave two-baryon sector, and drew out binding energy of a bound state in the sector, the H-dibaryon. It turned out that the qualitative nature of the interaction does not change at all, while strength of the interaction change considerably with respect to change of lattice spacing a at a around 0.1 [fm]. Accordingly, binding energy of the H-dibaryon depends to the lattice spacing. This result is consistent to that reported by Mainz lattice QCD group. This issue may indicate a challenging point common to lattice QCD studies of multi-hadron systems.

离散化误差对 HAL QCD 重子力的影响
摘要 我们研究了晶格离散化对 HAL QCD 双重子力的影响。我们在同一夸克质量下用三种不同的晶格间距值进行了三味晶格 QCD 数值计算。我们提取了S波二重子扇形中的单味相互作用势,并得出了该扇形中的束缚态--H-二重子的束缚能。结果表明,相互作用的性质没有任何变化,而相互作用的强度在 0.1 [fm] 左右随晶格间距 a 的变化而发生很大变化。因此,H-二重子的结合能取决于晶格间距。这一结果与美因茨晶格 QCD 小组报告的结果一致。这个问题可能表明了多重子系统的晶格 QCD 研究中的一个共同挑战点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信