{"title":"The use of statistical features for low-rate denial-of-service attack detection","authors":"Ramin Fuladi, Tuncer Baykas, Emin Anarim","doi":"10.1007/s12243-024-01027-3","DOIUrl":null,"url":null,"abstract":"<div><p>Low-rate denial-of-service (LDoS) attacks can significantly reduce network performance. These attacks involve sending periodic high-intensity pulse data flows, sharing similar harmful effects with traditional DoS attacks. However, LDoS attacks have different attack modes, making detection particularly challenging. The high level of concealment associated with LDoS attacks makes them extremely difficult to identify using traditional DoS detection methods. In this paper, we explore the potential of using statistical features for LDoS attack detection. Our results demonstrate the promising performance of statistical features in detecting these attacks. Furthermore, through ANOVA, mutual information, RFE, and SHAP analysis, we find that entropy and L-moment-based features play a crucial role in LDoS attack detection. These findings provide valuable insights into utilizing statistical features enhancing network security, thereby improving the overall resilience and stability of networks against various types of attacks.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"79 9-10","pages":"679 - 691"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-024-01027-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-rate denial-of-service (LDoS) attacks can significantly reduce network performance. These attacks involve sending periodic high-intensity pulse data flows, sharing similar harmful effects with traditional DoS attacks. However, LDoS attacks have different attack modes, making detection particularly challenging. The high level of concealment associated with LDoS attacks makes them extremely difficult to identify using traditional DoS detection methods. In this paper, we explore the potential of using statistical features for LDoS attack detection. Our results demonstrate the promising performance of statistical features in detecting these attacks. Furthermore, through ANOVA, mutual information, RFE, and SHAP analysis, we find that entropy and L-moment-based features play a crucial role in LDoS attack detection. These findings provide valuable insights into utilizing statistical features enhancing network security, thereby improving the overall resilience and stability of networks against various types of attacks.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.