{"title":"Elastic-plastic crack-tip field in hydride forming metals under hydrogen chemical equilibrium","authors":"A. G. Varias","doi":"10.1007/s10704-024-00766-7","DOIUrl":null,"url":null,"abstract":"<div><p>Hydride precipitation ahead of a crack is examined under conditions of hydrogen chemical equilibrium, constant temperature and elastic-plastic power-law hardening metal behavior. The limiting conditions are approached via the interaction of the operating physical mechanisms of material deformation, hydrogen diffusion and hydride precipitation. Hydrides are characterized by hydride volume fraction and isotropic transformation strain. Analytical relations are presented for hydride volume fraction and stress, as well as for hydride precipitation zone boundary. It is shown that there is an annulus, within the hydride precipitation zone, where stresses, although vary according to <span>\\({\\left(1/r\\right)}^{1/n+1}\\)</span> -singularity, deviate significantly from the well-known HRR-field, being smaller, according to the difference of hydrostatic stress before and after hydride precipitation. Hydride precipitation zone increases with crack-tip constraint, given by triaxiality parameter <span>\\(Q\\)</span>.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 1","pages":"47 - 57"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00766-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydride precipitation ahead of a crack is examined under conditions of hydrogen chemical equilibrium, constant temperature and elastic-plastic power-law hardening metal behavior. The limiting conditions are approached via the interaction of the operating physical mechanisms of material deformation, hydrogen diffusion and hydride precipitation. Hydrides are characterized by hydride volume fraction and isotropic transformation strain. Analytical relations are presented for hydride volume fraction and stress, as well as for hydride precipitation zone boundary. It is shown that there is an annulus, within the hydride precipitation zone, where stresses, although vary according to \({\left(1/r\right)}^{1/n+1}\) -singularity, deviate significantly from the well-known HRR-field, being smaller, according to the difference of hydrostatic stress before and after hydride precipitation. Hydride precipitation zone increases with crack-tip constraint, given by triaxiality parameter \(Q\).
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.