On the Steadiness of Symmetric Solutions to Two Dimensional Dispersive Models

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Long Pei, Fengyang Xiao, Pan Zhang
{"title":"On the Steadiness of Symmetric Solutions to Two Dimensional Dispersive Models","authors":"Long Pei,&nbsp;Fengyang Xiao,&nbsp;Pan Zhang","doi":"10.1007/s00021-024-00869-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the steadiness of symmetric solutions to two dispersive models in shallow water and hyperelastic mechanics, respectively. These models are derived previously in the two-dimensional setting and can be viewed as the generalization of the Camassa–Holm and Kadomtsev–Petviashvili equations. For these two models, we prove that the symmetry of classical solutions implies steadiness in the horizontal direction. We also confirm the connection between symmetry and steadiness for solutions in weak formulation, which covers in particular the peaked solutions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00869-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the steadiness of symmetric solutions to two dispersive models in shallow water and hyperelastic mechanics, respectively. These models are derived previously in the two-dimensional setting and can be viewed as the generalization of the Camassa–Holm and Kadomtsev–Petviashvili equations. For these two models, we prove that the symmetry of classical solutions implies steadiness in the horizontal direction. We also confirm the connection between symmetry and steadiness for solutions in weak formulation, which covers in particular the peaked solutions.

论二维分散模型对称解的稳定性
在本文中,我们分别考虑了浅水和超弹性力学中两个分散模型对称解的稳定性。这些模型是之前在二维环境中推导出来的,可视为卡马萨-霍尔姆方程和卡多姆采夫-佩特维亚什维利方程的广义化。对于这两个模型,我们证明了经典解的对称性意味着水平方向上的稳定性。我们还证实了弱公式解的对称性和稳定性之间的联系,尤其是峰值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信