Bisimplicial separators

Pub Date : 2024-04-11 DOI:10.1002/jgt.23098
Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković
{"title":"Bisimplicial separators","authors":"Martin Milanič,&nbsp;Irena Penev,&nbsp;Nevena Pivač,&nbsp;Kristina Vušković","doi":"10.1002/jgt.23098","DOIUrl":null,"url":null,"abstract":"<p>A <i>minimal separator</i> of a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> such that there exist vertices <span></span><math>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> with the property that <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> separates <span></span><math>\n \n <mrow>\n <mi>a</mi>\n </mrow></math> from <span></span><math>\n \n <mrow>\n <mi>b</mi>\n </mrow></math> in <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, but no proper subset of <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> does. For an integer <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow></math>, we say that a minimal separator is <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-<i>simplicial</i> if it can be covered by <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> cliques and denote by <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> the class of all graphs in which each minimal separator is <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-simplicial. We show that for each <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow></math>, the class <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> is closed under induced minors, and we use this to show that the \n<span>Maximum Weight Stable Set</span> problem can be solved in polynomial time for <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math>. We also give a complete list of minimal forbidden induced minors for <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>. Next, we show that, for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow></math>, every nonnull graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> has a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-simplicial vertex, that is, a vertex whose neighborhood is a union of <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> cliques; we deduce that the \n<span>Maximum Weight Clique</span> problem can be solved in polynomial time for graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>. Further, we show that, for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow></math>, it is NP-hard to recognize graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math>; the time complexity of recognizing graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> is unknown. We also show that the \n<span>Maximum Clique</span> problem is NP-hard for graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math>. Finally, we prove a decomposition theorem for diamond-free graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> (where the <i>diamond</i> is the graph obtained from <span></span><math>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow></math> by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the \n<span>Vertex Coloring</span> and recognition problems for diamond-free graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>, and improved running times for the \n<span>Maximum Weight Clique</span> and \n<span>Maximum Weight Stable Set</span> problems for this class of graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A minimal separator of a graph G is a set S V ( G ) such that there exist vertices a , b V ( G ) S with the property that S separates a from b in G , but no proper subset of S does. For an integer k 0 , we say that a minimal separator is k -simplicial if it can be covered by k cliques and denote by G k the class of all graphs in which each minimal separator is k -simplicial. We show that for each k 0 , the class G k is closed under induced minors, and we use this to show that the  Maximum Weight Stable Set problem can be solved in polynomial time for G k . We also give a complete list of minimal forbidden induced minors for G 2 . Next, we show that, for k 1 , every nonnull graph in G k has a k -simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques; we deduce that the  Maximum Weight Clique problem can be solved in polynomial time for graphs in G 2 . Further, we show that, for k 3 , it is NP-hard to recognize graphs in G k ; the time complexity of recognizing graphs in G 2 is unknown. We also show that the  Maximum Clique problem is NP-hard for graphs in G 3 . Finally, we prove a decomposition theorem for diamond-free graphs in G 2 (where the diamond is the graph obtained from K 4 by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the  Vertex Coloring and recognition problems for diamond-free graphs in G 2 , and improved running times for the  Maximum Weight Clique and  Maximum Weight Stable Set problems for this class of graphs.

Abstract Image

分享
查看原文
二等分隔符
一个图的最小分隔符是这样一个集合,即存在这样的顶点,它们具有从 、 中分隔开来的属性,但没有适当的子集这样做。对于整数 ,如果最小分隔符可以被小块覆盖,我们就说它是-简单的,并用所有每个最小分隔符都是-简单的图的类来表示。我们证明,对于每个 ,该类在诱导最小分隔符下是封闭的,并以此证明最大权重稳定集问题可以在多项式时间内求解.我们还给出了......的最小禁止诱导最小数的完整列表。接下来,我们证明,对于......中的每个非空图,都有一个简单顶点,也就是说,有一个顶点的邻域是小群的联合;我们推导出,对于......中的图,最大权重小群问题可以在多项式时间内求解。此外,我们还证明了,对于......,识别......中的图是 NP 难的;识别......中的图的时间复杂度尚不清楚。我们还证明,对于......中的图,最大克立(Maximum Clique)问题是 NP-hard。最后,我们证明了 in 中无菱形图的分解定理(其中菱形图是通过删除一条边得到的图),并利用该定理得到了针对 , 中无菱形图的顶点着色问题和识别问题的多项式时间算法,以及针对该类图的最大权重簇问题和最大权重稳定集问题的改进运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信