{"title":"Best possible upper bounds on the restrained domination number of cubic graphs","authors":"Boštjan Brešar, Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":null,"url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices such that every vertex in <span></span><math>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> is adjacent to a vertex in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math>. A restrained dominating set of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a dominating set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> with the additional restraint that the graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> obtained by removing all vertices in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> is isolate-free. The domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the restrained domination number <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. Let <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> be a cubic graph of order <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>. A classical result of Reed states that <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>3</mn>\n \n <mn>8</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is more challenging, and we prove that <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"763-815"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A dominating set in a graph is a set of vertices such that every vertex in is adjacent to a vertex in . A restrained dominating set of is a dominating set with the additional restraint that the graph obtained by removing all vertices in is isolate-free. The domination number and the restrained domination number are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of . Let be a cubic graph of order . A classical result of Reed states that , and this bound is best possible. To determine the best possible upper bound on the restrained domination number of is more challenging, and we prove that .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .