{"title":"Best possible upper bounds on the restrained domination number of cubic graphs","authors":"Boštjan Brešar, Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":null,"url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices such that every vertex in <span></span><math>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> is adjacent to a vertex in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math>. A restrained dominating set of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a dominating set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> with the additional restraint that the graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> obtained by removing all vertices in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> is isolate-free. The domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the restrained domination number <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. Let <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> be a cubic graph of order <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>. A classical result of Reed states that <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>3</mn>\n \n <mn>8</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is more challenging, and we prove that <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A dominating set in a graph is a set of vertices such that every vertex in is adjacent to a vertex in . A restrained dominating set of is a dominating set with the additional restraint that the graph obtained by removing all vertices in is isolate-free. The domination number and the restrained domination number are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of . Let be a cubic graph of order . A classical result of Reed states that , and this bound is best possible. To determine the best possible upper bound on the restrained domination number of is more challenging, and we prove that .