Best possible upper bounds on the restrained domination number of cubic graphs

Pub Date : 2024-04-11 DOI:10.1002/jgt.23095
Boštjan Brešar, Michael A. Henning
{"title":"Best possible upper bounds on the restrained domination number of cubic graphs","authors":"Boštjan Brešar,&nbsp;Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":null,"url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices such that every vertex in <span></span><math>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> is adjacent to a vertex in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math>. A restrained dominating set of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a dominating set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> with the additional restraint that the graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> obtained by removing all vertices in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> is isolate-free. The domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the restrained domination number <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. Let <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> be a cubic graph of order <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>. A classical result of Reed states that <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>3</mn>\n \n <mn>8</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is more challenging, and we prove that <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in V ( G ) S is adjacent to a vertex in S . A restrained dominating set of G is a dominating set S with the additional restraint that the graph G S obtained by removing all vertices in S is isolate-free. The domination number γ ( G ) and the restrained domination number γ r ( G ) are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of G . Let G be a cubic graph of order n . A classical result of Reed states that γ ( G ) 3 8 n , and this bound is best possible. To determine the best possible upper bound on the restrained domination number of G is more challenging, and we prove that γ r ( G ) 2 5 n .

Abstract Image

分享
查看原文
立方图的约束支配数的最佳上限
图中的支配集是这样一个顶点集合:图中的每个顶点都与图中的一个顶点相邻。限制支配集是一个支配集,其附加限制条件是移除所有 in 中的顶点后得到的图是无孤立的。支配数和受约束支配数分别是支配集和受约束支配集的最小心数。 假设是一个阶为 的立方图。里德的一个经典结果表明, ,而这个界限是可能的最佳界限。要确定......的受约束支配数的最佳可能上限则更具挑战性,我们将证明......。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信