Hierarchical Patch Aggregation Transformer for Motion Deblurring

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yujie Wu, Lei Liang, Siyao Ling, Zhisheng Gao
{"title":"Hierarchical Patch Aggregation Transformer for Motion Deblurring","authors":"Yujie Wu, Lei Liang, Siyao Ling, Zhisheng Gao","doi":"10.1007/s11063-024-11594-0","DOIUrl":null,"url":null,"abstract":"<p>The encoder-decoder framework based on Transformer components has become a paradigm in the field of image deblurring architecture design. In this paper, we critically revisit this approach and find that many current architectures severely focus on limited local regions during the feature extraction stage. These designs compromise the feature richness and diversity of the encoder-decoder framework, leading to bottlenecks in performance improvement. To address these deficiencies, a novel Hierarchical Patch Aggregation Transformer architecture (HPAT) is proposed. In the initial feature extraction stage, HPAT combines Axis-Selective Transformer Blocks with linear complexity and is supplemented by an adaptive hierarchical attention fusion mechanism. These mechanisms enable the model to effectively capture the spatial relationships between features and integrate features from different hierarchical levels. Then, we redesign the feedforward network of the Transformer block in the encoder-decoder structure and propose the Fused Feedforward Network. This effective aggregation enhances the ability to capture and retain local detailed features. We evaluate HPAT through extensive experiments and compare its performance with baseline methods on public datasets. Experimental results show that the proposed HPAT model achieves state-of-the-art performance in image deblurring tasks.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11594-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The encoder-decoder framework based on Transformer components has become a paradigm in the field of image deblurring architecture design. In this paper, we critically revisit this approach and find that many current architectures severely focus on limited local regions during the feature extraction stage. These designs compromise the feature richness and diversity of the encoder-decoder framework, leading to bottlenecks in performance improvement. To address these deficiencies, a novel Hierarchical Patch Aggregation Transformer architecture (HPAT) is proposed. In the initial feature extraction stage, HPAT combines Axis-Selective Transformer Blocks with linear complexity and is supplemented by an adaptive hierarchical attention fusion mechanism. These mechanisms enable the model to effectively capture the spatial relationships between features and integrate features from different hierarchical levels. Then, we redesign the feedforward network of the Transformer block in the encoder-decoder structure and propose the Fused Feedforward Network. This effective aggregation enhances the ability to capture and retain local detailed features. We evaluate HPAT through extensive experiments and compare its performance with baseline methods on public datasets. Experimental results show that the proposed HPAT model achieves state-of-the-art performance in image deblurring tasks.

Abstract Image

用于运动去模糊的分层补丁聚合变换器
基于变换器组件的编码器-解码器框架已成为图像去模糊架构设计领域的典范。在本文中,我们重新审视了这一方法,发现当前的许多架构在特征提取阶段严重关注有限的局部区域。这些设计损害了编码器-解码器框架的特征丰富性和多样性,导致性能提升遇到瓶颈。为了解决这些缺陷,我们提出了一种新颖的分层补丁聚合转换器架构(HPAT)。在初始特征提取阶段,HPAT 结合了具有线性复杂性的轴选择变换器块,并辅以自适应分层注意力融合机制。这些机制使模型能够有效捕捉特征之间的空间关系,并整合来自不同层次的特征。然后,我们重新设计了编码器-解码器结构中变换器模块的前馈网络,并提出了融合前馈网络。这种有效的聚合增强了捕捉和保留局部细节特征的能力。我们通过大量实验对 HPAT 进行了评估,并将其性能与公共数据集上的基准方法进行了比较。实验结果表明,所提出的 HPAT 模型在图像去模糊任务中实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信