Neurophotonics beyond the surface: unmasking the brain’s complexity exploiting optical scattering

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Fei Xia, Caio Vaz Rimoli, Walther Akemann, Cathie Ventalon, Laurent Bourdieu, Sylvain Gigan, Hilton B. de Aguiar
{"title":"Neurophotonics beyond the surface: unmasking the brain’s complexity exploiting optical scattering","authors":"Fei Xia, Caio Vaz Rimoli, Walther Akemann, Cathie Ventalon, Laurent Bourdieu, Sylvain Gigan, Hilton B. de Aguiar","doi":"10.1117/1.nph.11.s1.s11510","DOIUrl":null,"url":null,"abstract":"The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"111 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.nph.11.s1.s11510","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
超越表面的神经光子学:利用光学散射揭示大脑的复杂性
大脑的性质错综复杂,需要应用先进的探测技术来全面研究和了解其工作机制。神经光子学提供了微创方法,利用光学技术在细胞甚至分子水平对大脑进行探测。然而,多种挑战依然存在,尤其是在成像深度、视场、速度和生物兼容性方面。解决这些光学难题的一个主要障碍是大脑的散射特性。复杂介质光学是一个专门研究光在具有复杂的异质光学特性的材料中传播的领域,这一视角强调了复杂介质光学在推进和改进神经元读出结构成像和神经元活动光学记录方面的潜力。主要策略包括利用散射特性提高性能的波前整形技术和计算成像与传感技术。我们将讨论这两个领域的潜在合并以及长期体内应用的潜在挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信