Lihe Zhang, Changwei Zhang, Xi Zhao, Changliu He, Xu Zhang
{"title":"Improving lipid production by Rhodotorula glutinis for renewable fuel production based on machine learning","authors":"Lihe Zhang, Changwei Zhang, Xi Zhao, Changliu He, Xu Zhang","doi":"10.1007/s11705-024-2410-8","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial lipid fermentation encompasses intricate complex cell growth processes and heavily relies on expert experience for optimal production. Digital modeling of the fermentation process assists researchers in making intelligent decisions, employing logical reasoning and strategic planning to optimize lipid fermentation. It this study, the effects of medium components and concentrations on lipid fermentation were investigated, first. And then, leveraging the collated data, a variety of machine learning algorithms were used to model and optimize the lipid fermentation process. The models, based on artificial neural networks and support vector machines, achieved <i>R</i><sup>2</sup> values all higher than 0.93, ensuring accurate predictions of the fermentation process. Multiple linear regression was used to evaluate the respective target parameter, which were affected by the medium components of lipid fermentation. Lastly, single and multi-objective optimization were conducted for lipid fermentation using the genetic algorithm. Experimental results demonstrated the maximum biomass of 50.3 g·L<sup>−1</sup> and maximum lipid concentration of 14.1 g·L<sup>−1</sup> with the error between the experimental and predicted values less than 5%. The results of the multi-objective optimization reveal the synergistic and competitive relationship between biomass, lipid concentration, and conversion rate, which lay a basis for in-depth optimization and amplification.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2410-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial lipid fermentation encompasses intricate complex cell growth processes and heavily relies on expert experience for optimal production. Digital modeling of the fermentation process assists researchers in making intelligent decisions, employing logical reasoning and strategic planning to optimize lipid fermentation. It this study, the effects of medium components and concentrations on lipid fermentation were investigated, first. And then, leveraging the collated data, a variety of machine learning algorithms were used to model and optimize the lipid fermentation process. The models, based on artificial neural networks and support vector machines, achieved R2 values all higher than 0.93, ensuring accurate predictions of the fermentation process. Multiple linear regression was used to evaluate the respective target parameter, which were affected by the medium components of lipid fermentation. Lastly, single and multi-objective optimization were conducted for lipid fermentation using the genetic algorithm. Experimental results demonstrated the maximum biomass of 50.3 g·L−1 and maximum lipid concentration of 14.1 g·L−1 with the error between the experimental and predicted values less than 5%. The results of the multi-objective optimization reveal the synergistic and competitive relationship between biomass, lipid concentration, and conversion rate, which lay a basis for in-depth optimization and amplification.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.