On the ergodic theory of the real Rel foliation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jon Chaika, Barak Weiss
{"title":"On the ergodic theory of the real Rel foliation","authors":"Jon Chaika, Barak Weiss","doi":"10.1017/fmp.2024.6","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$({{\\mathcal {H}}}, m_{{{\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$({\\mathcal L}, m_{{\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal L} \\subset {{\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\operatorname {SL}_2({\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal L}}}$</span></span></img></span></span> is zero.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let Abstract Image$m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on Abstract Image${{\mathcal {H}}}$, and let Abstract Image$Z_0$ be a flow on Abstract Image$({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that Abstract Image$Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces Abstract Image$({\mathcal L}, m_{{\mathcal L}})$, where Abstract Image${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of Abstract Image$G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and Abstract Image$m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of Abstract Image$Z_0$ with respect to any of the measures Abstract Image$m_{{{\mathcal L}}}$ is zero.

关于实Rel折线的遍历理论
让 ${{\mathcal {H}}$ 是至少有两个奇点的平移面层,让 $m_{{\mathcal {H}}}}$ 表示 ${{\mathcal {H}}$ 上的马苏尔-维奇量纲,让 $Z_0$ 是通过积分一个 Rel 向量场得到的 $({{\mathcal {H}}, m_{{\mathcal {H}}}})$ 上的流。我们证明 $Z_0$ 是所有阶的混合流,尤其是遍历流。对于更一般的空间$({\mathcal L}, m_{\mathcal L}})$,其中${\mathcal L} \subset {{\mathcal L}, m_{\mathcal L}})$,我们还描述了由Rel向量场定义的流的遍历性。\子集 {{\mathcal {H}}$ 是 $G = \operatorname {SL}_2({\mathbb {R}})$(即仿射不变子域)作用的轨道闭包,而 $m_{{mathcal L}}$ 是自然度量。这些结果以布朗、埃斯金、菲利普和罗德里格斯-赫兹即将提出的度量分类结果为条件。我们还证明了 $Z_0$ 相对于任何一个度量 $m_{{{mathcal L}}$ 的熵为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信