{"title":"On the ergodic theory of the real Rel foliation","authors":"Jon Chaika, Barak Weiss","doi":"10.1017/fmp.2024.6","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$({{\\mathcal {H}}}, m_{{{\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$({\\mathcal L}, m_{{\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal L} \\subset {{\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\operatorname {SL}_2({\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal L}}}$</span></span></img></span></span> is zero.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.