Sharp well-posedness for the cubic NLS and mKdV in

IF 2.8 1区 数学 Q1 MATHEMATICS
Benjamin Harrop-Griffiths, Rowan Killip, Monica Vişan
{"title":"Sharp well-posedness for the cubic NLS and mKdV in","authors":"Benjamin Harrop-Griffiths, Rowan Killip, Monica Vişan","doi":"10.1017/fmp.2024.4","DOIUrl":null,"url":null,"abstract":"<p>We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$H^s({{\\mathbb {R}}})$</span></span></img></span></span> for any regularity <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$s&gt;-\\frac 12$</span></span></img></span></span>. Well-posedness has long been known for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$s\\geq 0$</span></span></img></span></span>, see [55], but not previously for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$s&lt;0$</span></span></img></span></span>. The scaling-critical value <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$s=-\\frac 12$</span></span></img></span></span> is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].</p><p>We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H^s({{\\mathbb {R}}})$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$s&gt;-\\frac 12$</span></span></img></span></span>. The best regularity achieved previously was <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$s\\geq \\tfrac 14$</span></span></img></span></span> (see [15, 24, 33, 39]).</p><p>To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in Abstract Image$H^s({{\mathbb {R}}})$ for any regularity Abstract Image$s>-\frac 12$. Well-posedness has long been known for Abstract Image$s\geq 0$, see [55], but not previously for any Abstract Image$s<0$. The scaling-critical value Abstract Image$s=-\frac 12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].

We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in Abstract Image$H^s({{\mathbb {R}}})$ for any Abstract Image$s>-\frac 12$. The best regularity achieved previously was Abstract Image$s\geq \tfrac 14$ (see [15, 24, 33, 39]).

To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.

立方体 NLS 和 mKdV 在
我们证明,对于任意正则性 $s>-\frac 12$,立方非线性薛定谔方程(聚焦和散焦)在 $H^s({{\mathbb {R}})$ 中都是全局好摆(well-posed)的。对于 $s\geq 0$,人们早已知道其好求性,见 [55],但对于任何 $s<0$,人们还不知道其好求性。由于已知会发生瞬时规范膨胀[11, 40, 48],因此这里必须排除缩放临界值 $s=-\frac 12$。我们还(以平行方式)证明了对于任意 $s>-\frac 12$,$H^s({\mathbb {R}})$ 中的实值和复值修正 Korteweg-de Vries 方程的良好求解性。之前达到的最佳正则性是 $s\geq \tfrac 14$(见 [15, 24, 33, 39])。为了克服数据到解图的均匀连续性失效,我们采用了 [37] 中引入的换向流方法。与[37]中的论证形成鲜明对比的是,本文的一个基本要素是证明了两个方程的局部平滑效应。尽管好求解具有非扰动性质,但导数增益与底层线性方程的导数增益相匹配。为了弥补平滑估计的局部性,我们还证明了轨道的紧密性。局部平滑性和严密性的证明都依赖于我们发现了一个新的单参数胁迫微观守恒定律族,它在这种低正则性下仍然有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信