Benjamin Harrop-Griffiths, Rowan Killip, Monica Vişan
{"title":"Sharp well-posedness for the cubic NLS and mKdV in","authors":"Benjamin Harrop-Griffiths, Rowan Killip, Monica Vişan","doi":"10.1017/fmp.2024.4","DOIUrl":null,"url":null,"abstract":"<p>We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$H^s({{\\mathbb {R}}})$</span></span></img></span></span> for any regularity <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$s>-\\frac 12$</span></span></img></span></span>. Well-posedness has long been known for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$s\\geq 0$</span></span></img></span></span>, see [55], but not previously for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$s<0$</span></span></img></span></span>. The scaling-critical value <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$s=-\\frac 12$</span></span></img></span></span> is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].</p><p>We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H^s({{\\mathbb {R}}})$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$s>-\\frac 12$</span></span></img></span></span>. The best regularity achieved previously was <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328063032726-0395:S2050508624000040:S2050508624000040_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$s\\geq \\tfrac 14$</span></span></img></span></span> (see [15, 24, 33, 39]).</p><p>To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in $H^s({{\mathbb {R}}})$ for any regularity $s>-\frac 12$. Well-posedness has long been known for $s\geq 0$, see [55], but not previously for any $s<0$. The scaling-critical value $s=-\frac 12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].
We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in $H^s({{\mathbb {R}}})$ for any $s>-\frac 12$. The best regularity achieved previously was $s\geq \tfrac 14$ (see [15, 24, 33, 39]).
To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.