Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff
{"title":"Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes","authors":"Guoxing Chen,&nbsp;Wenmei Liu,&nbsp;Marc Widenmeyer,&nbsp;Xiao Yu,&nbsp;Zhijun Zhao,&nbsp;Songhak Yoon,&nbsp;Ruijuan Yan,&nbsp;Wenjie Xie,&nbsp;Armin Feldhoff,&nbsp;Gert Homm,&nbsp;Emanuel Ionescu,&nbsp;Maria Fyta,&nbsp;Anke Weidenkaff","doi":"10.1007/s11705-024-2421-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, perovskite-type La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub> Fe<sub>0.6</sub>M<sub>0.1</sub>O<sub>3−<i>δ</i></sub> (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO<sub>2</sub> tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub>Fe<sub>0.6</sub>Zn<sub>0.1</sub>O<sub>3</sub><sub>−<i>δ</i></sub> exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min<sup>−1</sup>cm<sup>−2</sup> under air/He and air/CO<sub>2</sub> gradients at 1173 K, respectively. After 1600 h of CO<sub>2</sub> exposure, the perovskite structure remained intact, showcasing superior CO<sub>2</sub> resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO<sub>2</sub>-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2421-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Abstract Image

推进氧气分离:对 La0.7Ca0.3Co0.3Fe0.6M0.1O3-δ(M = 铜、锌)氧气传输膜的实验和计算分析的启示
本研究采用可扩展的反向共沉淀法合成了透辉石型 La0.7Ca0.3Co0.3 Fe0.6M0.1O3-δ(M = 铜、锌)粉末,将其作为氧传输膜的新型材料。这项综合研究涉及氧气渗透性、晶体结构、电导率、形貌、二氧化碳耐受性和长期再生耐久性等多个方面,重点关注相结构和组成。膜 La0.7Ca0.3Co0.3Fe0.6Zn0.1O3-δ 表现出很高的氧气渗透通量,在 1173 K 的空气/He 和空气/CO2 梯度下分别达到 0.88 和 0.64 mL-min-1cm-2。在接触二氧化碳 1600 小时后,过氧化物晶体结构仍然完好无损,显示出卓越的抗二氧化碳性能。第一原理模拟和实验测量相结合,加深了人们对铜/锌替代对薄膜结构、氧空位形成和传输行为的影响的理解。这些发现强调了这种具有高度二氧化碳耐受性的膜在高温氧气分离方面的应用潜力。对氧气传输机制的深入了解有助于推动下一代膜材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信