{"title":"A highly crystalline face-on π-conjugated polymer based on alkoxythiophene-flanked benzobisthiazole for organic photovoltaics","authors":"Shuhei Doi, Tsubasa Mikie, Kodai Yamanaka, Yuki Sato, Hideo Ohkita, Masahiko Saito, Itaru Osaka","doi":"10.1038/s41428-024-00906-9","DOIUrl":null,"url":null,"abstract":"The use of noncovalent intramolecular interactions constitutes a powerful design strategy for preparing π-conjugated polymers featuring high backbone coplanarities and thereby high crystallinities. Herein, we report the design and synthesis of an alkoxythiophene-flanked benzobisthiazole (BBTz) as a new building unit for π-conjugated polymers, which was subsequently copolymerized to give a simple BBTz-bithiophene copolymer with alkyl and alkoxy groups (PDBTz2). Owing to the S···O noncovalent intramolecular interactions between the alkoxy oxygens and thiazole sulfurs in BBTz, PDBTz2 showed greater coplanarity and crystallinity than its alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation observed for PDBTz1 to a face-on orientation for PDBTz2, which is preferable for organic photovoltaics (OPVs). In addition, the electron-donating nature of the alkoxy group increased the HOMO energy level of PDBTz2 compared to that of PDBTz1, which enabled photoinduced hole transfer from a nonfullerene acceptor, Y6, to the polymer. As a result, the short-circuit current density of an organic photovoltaic cell based on PDBTz2 and Y6 was significantly greater than that of a cell based on PDBTz1 and Y6. This study confirmed that alkoxythiophene-flanked BBTz is a promising building unit for high-performance π-conjugated polymers. We synthesized a new benzobisthiazole (BBTz) containing building unit in which two alkoxythiophenes were attached to the BBTz moiety so as to induce oxygen–sulfur noncovalent intramolecular interactions and thereby interlock the linkage. As a result, the π-conjugated polymer incorporating the new building unit, PDBTz2, had a more coplanar and rigid backbone than the alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation (PDBTz1) to the face-on orientation (PDBTz2), which is preferable for organic photovoltaics. Accordingly, PDBTz2 showed a much higher photovoltaic performance than PDBTz1.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 11","pages":"1051-1059"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00906-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00906-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of noncovalent intramolecular interactions constitutes a powerful design strategy for preparing π-conjugated polymers featuring high backbone coplanarities and thereby high crystallinities. Herein, we report the design and synthesis of an alkoxythiophene-flanked benzobisthiazole (BBTz) as a new building unit for π-conjugated polymers, which was subsequently copolymerized to give a simple BBTz-bithiophene copolymer with alkyl and alkoxy groups (PDBTz2). Owing to the S···O noncovalent intramolecular interactions between the alkoxy oxygens and thiazole sulfurs in BBTz, PDBTz2 showed greater coplanarity and crystallinity than its alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation observed for PDBTz1 to a face-on orientation for PDBTz2, which is preferable for organic photovoltaics (OPVs). In addition, the electron-donating nature of the alkoxy group increased the HOMO energy level of PDBTz2 compared to that of PDBTz1, which enabled photoinduced hole transfer from a nonfullerene acceptor, Y6, to the polymer. As a result, the short-circuit current density of an organic photovoltaic cell based on PDBTz2 and Y6 was significantly greater than that of a cell based on PDBTz1 and Y6. This study confirmed that alkoxythiophene-flanked BBTz is a promising building unit for high-performance π-conjugated polymers. We synthesized a new benzobisthiazole (BBTz) containing building unit in which two alkoxythiophenes were attached to the BBTz moiety so as to induce oxygen–sulfur noncovalent intramolecular interactions and thereby interlock the linkage. As a result, the π-conjugated polymer incorporating the new building unit, PDBTz2, had a more coplanar and rigid backbone than the alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation (PDBTz1) to the face-on orientation (PDBTz2), which is preferable for organic photovoltaics. Accordingly, PDBTz2 showed a much higher photovoltaic performance than PDBTz1.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.