Roel Botter, Jasper van den Hoogen, Akhileshwar Mishra, Kaixuan Ye, Albert van Rees, Marcel Hoekman, Klaus Boller, David Marpaung
{"title":"Observation of a Brillouin dynamic grating in silicon nitride waveguides","authors":"Roel Botter, Jasper van den Hoogen, Akhileshwar Mishra, Kaixuan Ye, Albert van Rees, Marcel Hoekman, Klaus Boller, David Marpaung","doi":"10.1063/5.0178804","DOIUrl":null,"url":null,"abstract":"Brillouin enhanced four wave mixing in the form of a Brillouin dynamic grating (BDG) enables a uniquely tunable filter whose properties can be tuned by purely optical means. This makes the BDG a valuable tool in microwave photonics (MWP). BDGs have been studied extensively in fibers, but the only observation in an integrated platform required exotic materials. Unlocking BDG in a standard and mature platform will enable its integration into large-scale circuits. Here, we demonstrate the first observation of a BDG in a silicon nitride (Si3N4) waveguide. We also present a new and optimized design, which will enhance the BDG response of the waveguide, unlocking the path to large-scale integration into MWP circuits.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"203 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0178804","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Brillouin enhanced four wave mixing in the form of a Brillouin dynamic grating (BDG) enables a uniquely tunable filter whose properties can be tuned by purely optical means. This makes the BDG a valuable tool in microwave photonics (MWP). BDGs have been studied extensively in fibers, but the only observation in an integrated platform required exotic materials. Unlocking BDG in a standard and mature platform will enable its integration into large-scale circuits. Here, we demonstrate the first observation of a BDG in a silicon nitride (Si3N4) waveguide. We also present a new and optimized design, which will enhance the BDG response of the waveguide, unlocking the path to large-scale integration into MWP circuits.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.