Débora A. S. Maia, Thalita M. Azevedo, Daniele S. Pereira, Rhuan A. M. Castro, Beatriz O. Nascimento, Enrique Rodríguez-Castellón, Moisés Bastos-Neto, Diana C. S. Azevedo
{"title":"Water vapor adsorption on small pore ion-exchanged zeolites","authors":"Débora A. S. Maia, Thalita M. Azevedo, Daniele S. Pereira, Rhuan A. M. Castro, Beatriz O. Nascimento, Enrique Rodríguez-Castellón, Moisés Bastos-Neto, Diana C. S. Azevedo","doi":"10.1007/s10450-024-00442-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ion exchange is the reversible exchange of ions in which there is no significant change in the solid structure. Zeolites are aluminosilicates with a defined structure, including cavities occupied by cations and water molecules, both with great freedom of movement, which makes cation exchange possible. In this study, small-pore zeolites chabazite (CHA) and clinoptilolite (CLI) were ion-exchanged with potassium. Then, the samples were characterized by N<sub>2</sub> isotherms at 77 K, CO<sub>2</sub> adsorption microcalorimetry at 298 K, and water vapor isotherms at 313 K. A mathematical model was applied to evaluate the adsorption kinetics for water vapor uptakes. Textural analysis showed that the ion exchange with potassium decreased the porosity of both zeolites, but CO<sub>2</sub> microcalorimetric data showed that these samples had higher CO<sub>2</sub> adsorption enthalpy, indicating a greater sorbate-sorbent interaction as compared to the pristine zeolites. Uptake rate curves suggest water diffusion is not appreciably altered after ion exchange. Interestingly, despite the larger size of K<sup>+</sup> cations as compared to Na<sup>+</sup>, effective diffusion time constant is on order of magnitude larger for the potassium-loaded CLI very likely due to the leaching of other contaminants upon ion-exchange.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 5","pages":"507 - 517"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00442-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ion exchange is the reversible exchange of ions in which there is no significant change in the solid structure. Zeolites are aluminosilicates with a defined structure, including cavities occupied by cations and water molecules, both with great freedom of movement, which makes cation exchange possible. In this study, small-pore zeolites chabazite (CHA) and clinoptilolite (CLI) were ion-exchanged with potassium. Then, the samples were characterized by N2 isotherms at 77 K, CO2 adsorption microcalorimetry at 298 K, and water vapor isotherms at 313 K. A mathematical model was applied to evaluate the adsorption kinetics for water vapor uptakes. Textural analysis showed that the ion exchange with potassium decreased the porosity of both zeolites, but CO2 microcalorimetric data showed that these samples had higher CO2 adsorption enthalpy, indicating a greater sorbate-sorbent interaction as compared to the pristine zeolites. Uptake rate curves suggest water diffusion is not appreciably altered after ion exchange. Interestingly, despite the larger size of K+ cations as compared to Na+, effective diffusion time constant is on order of magnitude larger for the potassium-loaded CLI very likely due to the leaching of other contaminants upon ion-exchange.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.