{"title":"Tailoring hydrophobicity vs. water capacity of adsorbents for adsorption applications: role of composites","authors":"Cigdem Atalay-Oral, Melkon Tatlier","doi":"10.1007/s10450-024-00459-6","DOIUrl":null,"url":null,"abstract":"<div><p>Water adsorption capacities of various adsorbents reported in the literature were investigated to define a hydrophobicity index that was plotted vs. water capacity. In this plot, logarithmic curves were proposed to be used as indicators of performance limits of adsorbents, especially for adsorption heat pumps. In spite of their useful adsorption properties, zeolites generally exhibited quite low hydrophobicity, remaining well below the logarithmic curve. In this study, the use of composites of zeolite NaY was examined both theoretically and experimentally for improvements in the water capacity and hydrophobicity. Salt impregnation and hydrothermal synthesis experiments were performed to prepare composites of zeolite NaY with LiCl/MgCl<sub>2</sub> salts and activated carbon, respectively. Water capacity and hydrophobicity of zeolite NaY composites were generally superior to those of pure zeolite. Zeolite composites may be advantageous for enhancing adsorption capacity and hydrophobicity of zeolites while eliminating low stability and slow adsorption kinetics of other adsorbents. Interface between two different phases might indicate another opportunity to provide improved adsorption properties for zeolite composites.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"673 - 684"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00459-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00459-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water adsorption capacities of various adsorbents reported in the literature were investigated to define a hydrophobicity index that was plotted vs. water capacity. In this plot, logarithmic curves were proposed to be used as indicators of performance limits of adsorbents, especially for adsorption heat pumps. In spite of their useful adsorption properties, zeolites generally exhibited quite low hydrophobicity, remaining well below the logarithmic curve. In this study, the use of composites of zeolite NaY was examined both theoretically and experimentally for improvements in the water capacity and hydrophobicity. Salt impregnation and hydrothermal synthesis experiments were performed to prepare composites of zeolite NaY with LiCl/MgCl2 salts and activated carbon, respectively. Water capacity and hydrophobicity of zeolite NaY composites were generally superior to those of pure zeolite. Zeolite composites may be advantageous for enhancing adsorption capacity and hydrophobicity of zeolites while eliminating low stability and slow adsorption kinetics of other adsorbents. Interface between two different phases might indicate another opportunity to provide improved adsorption properties for zeolite composites.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.