Numerical study of the Amick–Schonbek system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christian Klein, Jean-Claude Saut
{"title":"Numerical study of the Amick–Schonbek system","authors":"Christian Klein,&nbsp;Jean-Claude Saut","doi":"10.1111/sapm.12691","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to present a survey and a detailed numerical study on a remarkable Boussinesq system describing weakly nonlinear, long surface water waves. In the one-dimensional case, this system can be viewed as a dispersive perturbation of the hyperbolic Saint-Venant (shallow water) system. The asymptotic stability of the solitary waves is numerically established. Blow-up of solutions for initial data not satisfying the noncavitation condition as well as the appearance of dispersive shock waves are studied.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to present a survey and a detailed numerical study on a remarkable Boussinesq system describing weakly nonlinear, long surface water waves. In the one-dimensional case, this system can be viewed as a dispersive perturbation of the hyperbolic Saint-Venant (shallow water) system. The asymptotic stability of the solitary waves is numerically established. Blow-up of solutions for initial data not satisfying the noncavitation condition as well as the appearance of dispersive shock waves are studied.

Abstract Image

阿米克-尚贝克系统的数值研究
本文旨在对描述弱非线性长水面波的一个显著的布森斯克系统进行调查和详细的数值研究。在一维情况下,该系统可视为双曲 Saint-Venant(浅水)系统的分散扰动。数值确定了孤波的渐近稳定性。研究了不满足非凹陷条件的初始数据解的膨胀以及分散冲击波的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信