Threshold dynamics and bifurcation analysis of an SIS patch model with delayed media impact

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hua Zhang, Junjie Wei
{"title":"Threshold dynamics and bifurcation analysis of an SIS patch model with delayed media impact","authors":"Hua Zhang,&nbsp;Junjie Wei","doi":"10.1111/sapm.12693","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an susceptible–infected–susceptible (SIS) epidemic patch model with media delay is proposed at first. Then the basic reproduction number <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathcal {R}_0$</annotation>\n </semantics></math> is defined, and the threshold dynamics are studied. It is shown that the disease-free equilibrium is globally asymptotically stable if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathcal {R}_0&amp;lt;1$</annotation>\n </semantics></math> and the disease is uniformly persistent if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathcal {R}_0&amp;gt;1$</annotation>\n </semantics></math>. When the dispersal rates of susceptible and infected populations are identical and less than a critical value, it is proved that the limiting model has a unique positive equilibrium. Furthermore, the stability of the positive equilibrium and the existence of local and global Hopf bifurcations are obtained. Finally, some numerical simulations are performed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an susceptible–infected–susceptible (SIS) epidemic patch model with media delay is proposed at first. Then the basic reproduction number R 0 $\mathcal {R}_0$ is defined, and the threshold dynamics are studied. It is shown that the disease-free equilibrium is globally asymptotically stable if R 0 < 1 $\mathcal {R}_0&lt;1$ and the disease is uniformly persistent if R 0 > 1 $\mathcal {R}_0&gt;1$ . When the dispersal rates of susceptible and infected populations are identical and less than a critical value, it is proved that the limiting model has a unique positive equilibrium. Furthermore, the stability of the positive equilibrium and the existence of local and global Hopf bifurcations are obtained. Finally, some numerical simulations are performed.

具有延迟介质影响的 SIS 补丁模型的阈值动力学和分岔分析
本文首先提出了一个具有媒体延迟的易感-感染-易感(SIS)流行斑块模型。然后定义了基本繁殖数,并研究了阈值动力学。结果表明,如果 .,则无疾病均衡是全局渐近稳定的;如果 .,则疾病是均匀持久的。当易感种群和感染种群的扩散率相同且小于临界值时,证明了极限模型具有唯一的正均衡。此外,还得到了正平衡的稳定性以及局部和全局霍普夫分岔的存在性。最后,还进行了一些数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信