Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Deok Yong Yoon, Michael J. Daniels, Rebecca J. Willcocks, William T. Triplett, Juan Francisco Morales, Glenn A. Walter, William D. Rooney, Krista Vandenborne, Sarah Kim
{"title":"Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles","authors":"Deok Yong Yoon, Michael J. Daniels, Rebecca J. Willcocks, William T. Triplett, Juan Francisco Morales, Glenn A. Walter, William D. Rooney, Krista Vandenborne, Sarah Kim","doi":"10.1007/s10928-024-09910-1","DOIUrl":null,"url":null,"abstract":"<p>The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T<sub>2</sub>) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T<sub>2</sub>. Clinical data were collected from the prospective and longitudinal <i>ImagingNMD</i> study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T<sub>2</sub> of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T<sub>2</sub> model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T<sub>2</sub>. Sigmoid I<sub>max</sub> and E<sub>max</sub> models best captured the profiles of 6MWD and MRI-T<sub>2</sub> over age. Steroid use, baseline 6MWD, and baseline MRI-T<sub>2</sub> were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T<sub>2</sub> is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T<sub>2</sub> successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T<sub>2</sub>, supporting the use of MRI-T<sub>2</sub>. The developed models will guide drug developers in using the MRI-T<sub>2</sub> to most efficient use in DMD clinical trials.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"103 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09910-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.

Abstract Image

连接六分钟步行距离和腿部肌肉核磁共振松弛测量的五个多变量杜兴氏肌肉萎缩症进展模型
该研究旨在通过使用 6 分钟步行距离 (6MWD) 和 MRI-T2 建立杜氏肌营养不良症 (DMD) 的多变量疾病进展模型,为 DMD 临床试验中腿部肌肉 MRI 横向弛豫时间常数 (MRI-T2) 的使用提供定量信息。临床数据收集自前瞻性纵向 ImagingNMD 研究。通过非线性混合效应建模方法建立了疾病进展模型。分别建立了 6MWD 和五块肌肉的 MRI-T2 的单变量模型。评估时的年龄是时间指标。通过估计 6MWD 和 MRI-T2 模型变量的相关性,建立多变量模型。采用全模型估计法进行协变量分析,并进行了五次交叉验证。通过模拟来比较模型并预测协变量对 6MWD 和 MRI-T2 轨迹的影响。Sigmoid Imax 和 Emax 模型最能捕捉 6MWD 和 MRI-T2 随年龄变化的曲线。使用类固醇、基线 6MWD 和基线 MRI-T2 是重要的协变量。在五个模型中,6MWD 下降到其最大值一半的中位年龄是相似的,而 MRI-T2 上升到其最大值一半的中位年龄则因肌肉类型而异。连接 6MWD 和 MRI-T2 的模型成功地量化了个体特征如何改变疾病轨迹。这些模型证明了 6MWD 和 MRI-T2 之间存在合理的相关性,支持使用 MRI-T2。所开发的模型将指导药物开发人员在 DMD 临床试验中最有效地使用 MRI-T2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信