Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool With High-Accuracy and Multi-Level Parallelism

Ming Ling;Zhihao Feng;Ruiqi Chen;Yi Shao;Shidi Tang;Yanxiang Zhu
{"title":"Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool With High-Accuracy and Multi-Level Parallelism","authors":"Ming Ling;Zhihao Feng;Ruiqi Chen;Yi Shao;Shidi Tang;Yanxiang Zhu","doi":"10.1109/TBCAS.2024.3388323","DOIUrl":null,"url":null,"abstract":"AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n and 7.26\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1321-1337"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500753/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33 $\times$ and 7.26 $\times$ speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38 $\times$ speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.
Vina-FPGA-Cluster:基于多 FPGA 的分子对接工具,具有高精度和多级并行性
AutoDock Vina (Vina)以其精度和相对较高的速度在众多分子对接工具中脱颖而出,在药物发现过程中发挥着关键作用。Vina在FPGA平台上的硬件加速提供了一种高能效的方法来加快对接过程。然而,以往基于fpga的Vina加速器存在以下几个缺点:1)简单的均匀量化导致精度不可避免地下降;2)由于Vina复杂的计算过程,使得硬件设计的评估和优化阶段延长;3) Vina中的迭代计算限制了进一步并行化的潜力。4)系统的可扩展性受到其笨重架构的限制。为了解决上述挑战,我们提出了基于多fpga的分子对接工具Vina- fpga -cluster,实现高精度和多级并行Vina加速。站在Vina-FPGA的肩膀上,我们首先采用混合定点量化来最小化精度损失。然后,我们提出了一个基于systemc的模型,加速了硬件加速器架构的设计评估。接下来,我们提出了一种新的双向AG模块,用于数据级并行。最后,我们优化了系统架构,以便在多个Xilinx ZCU104板上可扩展部署,实现任务级并行。在三个具有代表性的分子对接数据集上对vina - fpga集群进行了测试。实验结果表明,在RMSD的背景下(对于以下指标的成功对接结果2Å), vina - fpga集群仅显示0.2%的损失。相对于CPU和Vina-FPGA, Vina-FPGA集群分别实现27.33$\times$和7.26$\times$的加速。值得注意的是,与GPU实现(Vina-GPU)相比,vina - fpga集群能够提供1.38倍的加速,而功耗仅为28.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信