Experimental Study of Pargasite NaCa2(Mg4Al)[Si6Al2O22](OH)2 Stability at T = 1000–1100°C and Pressure up to \({{P}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = 5 Kbar
{"title":"Experimental Study of Pargasite NaCa2(Mg4Al)[Si6Al2O22](OH)2 Stability at T = 1000–1100°C and Pressure up to \\({{P}_{{{{{\\text{H}}}_{{\\text{2}}}}{\\text{O}}}}}\\) = 5 Kbar","authors":"V. N. Deviatova, A. N. Nekrasov, G. V. Bondarenko","doi":"10.1134/S0016702924020046","DOIUrl":null,"url":null,"abstract":"<p>Pargasite stability was experimentally studied in IHPV at <span>\\({{P}_{{{{{\\text{H}}}_{{\\text{2}}}}{\\text{O}}}}}\\)</span> = 2 kbar and temperatures of 1000 to 1100<sup>o</sup>C, with equilibrium approached from above and below. Calcic amphibole was used to experimentally model processes that occur in a volcanic chamber at pressures up to 5 kbar. The phase diagram of pargasite has been refined. It has been established that the stability of pargasite is controlled by three reactions. (1) At low water pressures of less than 1 kbar, the dehydration reaction <i>Prg</i> = <i>Fo</i> + <i>Sp</i> + <i>Di</i> + <i>Ne</i> + <i>An</i> + H<sub>2</sub>O proceeds. (2) At water pressures higher than 1.2–1.5 kbar and a temperature of about 1100°C, the decomposition of pargasite is controlled by its incongruent melting <i>Prg</i> = <i>Fo</i> + <i>Sp</i> + {<i>Di</i> + <i>Ne</i> + <i>An</i>}<sup><i>L</i></sup> + H<sub>2</sub>O. (3) The third reaction <i>Prg</i> + <i>L</i> = <i>Fo</i> + <i>Sp</i> + <i>Di</i> + {<i>Ne</i> + <i>Pl</i>}<sup><i>L</i></sup> + H<sub>2</sub>O occurs within the same pressure range as the previous one but at lower temperatures of about ~1050°C. The reaction controls the pargasite liquidus and is caused by interaction between amphibole and coexisting melt. The liquidus of pargasite seems to most strongly depend on the activity of silica <span>\\({{a}_{{{\\text{Si}}{{{\\text{O}}}_{{\\text{2}}}}}}}\\)</span> in the melt.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 2","pages":"140 - 154"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924020046","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pargasite stability was experimentally studied in IHPV at \({{P}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = 2 kbar and temperatures of 1000 to 1100oC, with equilibrium approached from above and below. Calcic amphibole was used to experimentally model processes that occur in a volcanic chamber at pressures up to 5 kbar. The phase diagram of pargasite has been refined. It has been established that the stability of pargasite is controlled by three reactions. (1) At low water pressures of less than 1 kbar, the dehydration reaction Prg = Fo + Sp + Di + Ne + An + H2O proceeds. (2) At water pressures higher than 1.2–1.5 kbar and a temperature of about 1100°C, the decomposition of pargasite is controlled by its incongruent melting Prg = Fo + Sp + {Di + Ne + An}L + H2O. (3) The third reaction Prg + L = Fo + Sp + Di + {Ne + Pl}L + H2O occurs within the same pressure range as the previous one but at lower temperatures of about ~1050°C. The reaction controls the pargasite liquidus and is caused by interaction between amphibole and coexisting melt. The liquidus of pargasite seems to most strongly depend on the activity of silica \({{a}_{{{\text{Si}}{{{\text{O}}}_{{\text{2}}}}}}}\) in the melt.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.