SMILES-based machine learning enables the prediction of corrosion inhibition capacity

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhamad Akrom, Supriadi Rustad, Hermawan Kresno Dipojono
{"title":"SMILES-based machine learning enables the prediction of corrosion inhibition capacity","authors":"Muhamad Akrom, Supriadi Rustad, Hermawan Kresno Dipojono","doi":"10.1557/s43579-024-00551-6","DOIUrl":null,"url":null,"abstract":"<p>This study explores the efficacy of using a simplified molecular input line entry system (SMILES) as the sole feature, replacing quantum chemical properties (QCP), in predicting corrosion inhibition efficiency (CIE) for N-heterocyclic compounds. The gradient boosting regressor (GBR) model outperforms k-nearest neighbors (KNN), support vector regression (SVR), and other models. SMILES accurately predicts CIE for various datasets, demonstrating potential as a standalone feature. Results indicate a moderate correlation between SMILES representation and corrosion inhibition properties. The proposed method identifies novel N-heterocyclic derivatives with high CIE, suggesting its utility in discovering corrosion inhibitors.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00551-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the efficacy of using a simplified molecular input line entry system (SMILES) as the sole feature, replacing quantum chemical properties (QCP), in predicting corrosion inhibition efficiency (CIE) for N-heterocyclic compounds. The gradient boosting regressor (GBR) model outperforms k-nearest neighbors (KNN), support vector regression (SVR), and other models. SMILES accurately predicts CIE for various datasets, demonstrating potential as a standalone feature. Results indicate a moderate correlation between SMILES representation and corrosion inhibition properties. The proposed method identifies novel N-heterocyclic derivatives with high CIE, suggesting its utility in discovering corrosion inhibitors.

Graphical abstract

Abstract Image

基于 SMILES 的机器学习可预测缓蚀能力
本研究探讨了使用简化分子输入行输入系统(SMILES)作为唯一特征,取代量子化学性质(QCP)预测 N-杂环化合物缓蚀效率(CIE)的有效性。梯度提升回归(GBR)模型优于k-近邻(KNN)、支持向量回归(SVR)和其他模型。SMILES 可以准确预测各种数据集的 CIE,显示出作为独立特征的潜力。结果表明,SMILES 表示与缓蚀特性之间存在适度的相关性。所提出的方法能识别出具有高 CIE 的新型 N-杂环衍生物,这表明它在发现腐蚀抑制剂方面具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信