Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xueping Li, Xiaojie Tang, Zhuojun Wang, Peize Yuan, Lin Li, Chenhai Shen, Congxin Xia
{"title":"Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current","authors":"Xueping Li,&nbsp;Xiaojie Tang,&nbsp;Zhuojun Wang,&nbsp;Peize Yuan,&nbsp;Lin Li,&nbsp;Chenhai Shen,&nbsp;Congxin Xia","doi":"10.1007/s11467-023-1390-3","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-<i>k</i> dielectric is placed close to the drain, it behaves with a larger on-state current (<i>I</i><sub>on</sub>) of 5052 µA/µm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO<sub>2</sub>, the largest <i>I</i><sub>on</sub> is 5134 µA/µm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-<i>k</i> dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1390-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-k dielectric is placed close to the drain, it behaves with a larger on-state current (Ion) of 5052 µA/µm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO2, the largest Ion is 5134 µA/µm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.

实现超高导通电流的 5 纳米以下双层 GaSe MOSFET
介电工程在器件微型化过程中起着至关重要的作用。在此,我们研究了双层 GaSe 金属氧化物半导体场效应晶体管 (MOSFET) 的电学特性,并考虑了异质栅-介电结构、介电材料和 GaSe 堆叠模式。结果表明,器件性能在很大程度上取决于介电常数和绝缘体的位置。当高 k 电介质靠近漏极时,当沟道为 5 nm 时,导通电流(Ion)较大,为 5052 µA/µm。此外,当沟道为 5 nm、绝缘体为 HfO2 时,采用交流堆叠 GaSe 沟道的器件的最大导通电流为 5134 µA/µm。特别是当栅极长度为 2 nm 时,使用高介电体的 AA 堆叠器件仍能满足 ITRS 2028 的 HP 要求。因此,这项工作为通过介电工程调节二维纳米器件的性能提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信