Joint Diagnostic Approach to Pressure and Tracer Responses from Reservoirs: An Experimental and Theoretical Study to Estimate the Accuracy of Reservoir Models
{"title":"Joint Diagnostic Approach to Pressure and Tracer Responses from Reservoirs: An Experimental and Theoretical Study to Estimate the Accuracy of Reservoir Models","authors":"Mitsuo Matsumoto, Kazuki Sawayama","doi":"10.1155/2024/9329314","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel perspective for improving the understanding of permeable structures at geothermal prospects by jointly diagnosing the responses of conventional pressure transient and tracer testing. The pressure and tracer responses individually yield apparent porosity–thickness products. The difference between them implies the existence of unknown dead-end features involved in a reservoir model. Laboratory experiments and numerical simulations validate this concept. Potential application to hypothetical exploration demonstrates that the logarithmic ratio of the porosity–thickness products, determined based on pressure and tracer responses, indicates the accuracy of the reservoir model to be successively updated with the progress of the exploration. The reservoir model successfully reproduced the synthetic observations regardless of the accuracy of permeable structure if different porosity–thickness products were allowed to be assumed to individually reproduce pressure and tracer responses. These porosity–thickness products coincided only if the reservoir model correctly captured the permeable structure. This novel perspective will provide strategic guides for successful exploration and development at the prospects of geothermal and, potentially, general geofluid resources.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9329314","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel perspective for improving the understanding of permeable structures at geothermal prospects by jointly diagnosing the responses of conventional pressure transient and tracer testing. The pressure and tracer responses individually yield apparent porosity–thickness products. The difference between them implies the existence of unknown dead-end features involved in a reservoir model. Laboratory experiments and numerical simulations validate this concept. Potential application to hypothetical exploration demonstrates that the logarithmic ratio of the porosity–thickness products, determined based on pressure and tracer responses, indicates the accuracy of the reservoir model to be successively updated with the progress of the exploration. The reservoir model successfully reproduced the synthetic observations regardless of the accuracy of permeable structure if different porosity–thickness products were allowed to be assumed to individually reproduce pressure and tracer responses. These porosity–thickness products coincided only if the reservoir model correctly captured the permeable structure. This novel perspective will provide strategic guides for successful exploration and development at the prospects of geothermal and, potentially, general geofluid resources.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.