Kelp forest diversity under projected end-of-century climate change

IF 4.6 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Jorge Assis, Eliza Fragkopoulou, Lidiane Gouvêa, Miguel B. Araújo, Ester A. Serrão
{"title":"Kelp forest diversity under projected end-of-century climate change","authors":"Jorge Assis,&nbsp;Eliza Fragkopoulou,&nbsp;Lidiane Gouvêa,&nbsp;Miguel B. Araújo,&nbsp;Ester A. Serrão","doi":"10.1111/ddi.13837","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Future climate change threatens marine forests across the world, potentially disrupting ecosystem function and services. Nonetheless, the direction and intensity of climate-induced changes in kelp forest biodiversity remain unknown, precluding well-informed conservation and management practices.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We use machine-learning models to forecast global changes in species richness and community composition of 105 kelp forest species under contrasting Shared Socioeconomic Pathway (SSP) scenarios of climate change (decade 2090–2100): one aligned with the Paris Agreement and another of substantially higher emissions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A poleward and depth shift in species distributions is forecasted, translating into ~15% less area in the extent of the global biome, coupled with marked regional biodiversity changes. Community composition changes are mostly projected in the Arctic, the Northern Pacific and Atlantic, and Australasia, owing to poleward range expansions and wide low latitude losses.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>By surpassing the Paris Agreement expectations, species reshuffling may simplify and impair ecosystem services in numerous temperate regions of Australasia, Southern Africa, Southern America and the Northern Atlantic, and in the tropical Pacific, where complete species losses were projected without replacement. These estimates, flagging threatened regions and species, as well as refugial areas of population persistence, can now inform conservation, management and restoration practices considering future climate change.</p>\n </section>\n </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity and Distributions","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ddi.13837","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Future climate change threatens marine forests across the world, potentially disrupting ecosystem function and services. Nonetheless, the direction and intensity of climate-induced changes in kelp forest biodiversity remain unknown, precluding well-informed conservation and management practices.

Location

Global.

Methods

We use machine-learning models to forecast global changes in species richness and community composition of 105 kelp forest species under contrasting Shared Socioeconomic Pathway (SSP) scenarios of climate change (decade 2090–2100): one aligned with the Paris Agreement and another of substantially higher emissions.

Results

A poleward and depth shift in species distributions is forecasted, translating into ~15% less area in the extent of the global biome, coupled with marked regional biodiversity changes. Community composition changes are mostly projected in the Arctic, the Northern Pacific and Atlantic, and Australasia, owing to poleward range expansions and wide low latitude losses.

Main Conclusions

By surpassing the Paris Agreement expectations, species reshuffling may simplify and impair ecosystem services in numerous temperate regions of Australasia, Southern Africa, Southern America and the Northern Atlantic, and in the tropical Pacific, where complete species losses were projected without replacement. These estimates, flagging threatened regions and species, as well as refugial areas of population persistence, can now inform conservation, management and restoration practices considering future climate change.

Abstract Image

预计本世纪末气候变化下的海带森林多样性
未来的气候变化威胁着世界各地的海洋森林,有可能破坏生态系统的功能和服务。然而,气候引起的海带森林生物多样性变化的方向和强度仍是未知数,因此无法在充分知情的情况下进行保护和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diversity and Distributions
Diversity and Distributions 环境科学-生态学
CiteScore
8.90
自引率
4.30%
发文量
195
审稿时长
8-16 weeks
期刊介绍: Diversity and Distributions is a journal of conservation biogeography. We publish papers that deal with the application of biogeographical principles, theories, and analyses (being those concerned with the distributional dynamics of taxa and assemblages) to problems concerning the conservation of biodiversity. We no longer consider papers the sole aim of which is to describe or analyze patterns of biodiversity or to elucidate processes that generate biodiversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信