Recent trends on energy-efficient solar dryers for food and agricultural products drying: a review

Kavati Venkateswarlu, S. V. Kota Reddy
{"title":"Recent trends on energy-efficient solar dryers for food and agricultural products drying: a review","authors":"Kavati Venkateswarlu,&nbsp;S. V. Kota Reddy","doi":"10.1007/s42768-024-00193-3","DOIUrl":null,"url":null,"abstract":"<div><p>The energy efficiency enhancement of solar dryers has attracted the attention of researchers worldwide because of the need for energy storage in solar drying applications, which arises primarily from the irregular nature of solar energy that leads to improper drying which will reduce the quality of the products being dried. This work comprehensively reviews the state-of-the-art research carried out on solar dryers for energy efficiency enhancement using various alternative strategies, including hybrid solar dryers that use auxiliary heating sources, such as electric heaters or biomass heaters, solar-assisted heat pump dryer, use of desiccant materials, and heat storage systems that use both sensible and latent heat storage. The advent of phase change materials (PCM), such as thermally and chemically stable PCMs, for long-term storage, bio-degradable and bio-compatible PCM materials to alleviate the negative environmental impact of conventional PCMs is also presented. The performance parameters considered for evaluating dryers include the maximum temperature attained inside the drying chamber, drying time and efficiency, specific moisture extraction rate (SMER), energy and exergy efficiency and CO<sub>2</sub> mitigation effect. The factors considered to analyze the PCMs application in solar dryers include cost and sustainability of PCMs, and both energy and exergy analyses of dryers using PCMs. The gaps in current knowledge and future scope for further improvement of solar dryers are also elucidated.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"335 - 353"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-024-00193-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-024-00193-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The energy efficiency enhancement of solar dryers has attracted the attention of researchers worldwide because of the need for energy storage in solar drying applications, which arises primarily from the irregular nature of solar energy that leads to improper drying which will reduce the quality of the products being dried. This work comprehensively reviews the state-of-the-art research carried out on solar dryers for energy efficiency enhancement using various alternative strategies, including hybrid solar dryers that use auxiliary heating sources, such as electric heaters or biomass heaters, solar-assisted heat pump dryer, use of desiccant materials, and heat storage systems that use both sensible and latent heat storage. The advent of phase change materials (PCM), such as thermally and chemically stable PCMs, for long-term storage, bio-degradable and bio-compatible PCM materials to alleviate the negative environmental impact of conventional PCMs is also presented. The performance parameters considered for evaluating dryers include the maximum temperature attained inside the drying chamber, drying time and efficiency, specific moisture extraction rate (SMER), energy and exergy efficiency and CO2 mitigation effect. The factors considered to analyze the PCMs application in solar dryers include cost and sustainability of PCMs, and both energy and exergy analyses of dryers using PCMs. The gaps in current knowledge and future scope for further improvement of solar dryers are also elucidated.

Graphical abstract

Abstract Image

用于食品和农产品干燥的高能效太阳能干燥器的最新发展趋势:综述
提高太阳能干燥机的能效引起了全世界研究人员的关注,因为在太阳能干燥应用中需要储能,这主要是由于太阳能的不规则性导致干燥不当,从而降低了干燥产品的质量。这项工作全面回顾了利用各种替代策略提高太阳能干燥机能效的最新研究成果,包括使用辅助加热源(如电加热器或生物质加热器)的混合太阳能干燥机、太阳能辅助热泵干燥机、使用干燥剂材料以及使用显热和潜热存储的热存储系统。此外,还介绍了相变材料(PCM)的出现,如用于长期储存的热稳定性和化学稳定性 PCM,以及可生物降解和生物兼容的 PCM 材料,以减轻传统 PCM 对环境的负面影响。评估干燥机时考虑的性能参数包括干燥室内达到的最高温度、干燥时间和效率、特定水分提取率 (SMER)、能效和放能效以及二氧化碳减缓效应。分析太阳能干燥器中 PCM 应用时考虑的因素包括 PCM 的成本和可持续性,以及使用 PCM 的干燥器的能量和放能分析。此外,还阐明了太阳能干燥器目前存在的知识空白和未来进一步改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信