Orthogonal Polynomial Duality and Unitary Symmetries of Multi-species ASEP\((q,\varvec{\theta })\) and Higher-Spin Vertex Models via \(^*\)-Bialgebra Structure of Higher Rank Quantum Groups

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Chiara Franceschini, Jeffrey Kuan, Zhengye Zhou
{"title":"Orthogonal Polynomial Duality and Unitary Symmetries of Multi-species ASEP\\((q,\\varvec{\\theta })\\) and Higher-Spin Vertex Models via \\(^*\\)-Bialgebra Structure of Higher Rank Quantum Groups","authors":"Chiara Franceschini,&nbsp;Jeffrey Kuan,&nbsp;Zhengye Zhou","doi":"10.1007/s00220-024-04979-8","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general method to produce orthogonal polynomial dualities from the <span>\\(^*\\)</span>-bialgebra structure of Drinfeld–Jimbo quantum groups. The <span>\\(^*\\)</span>-structure allows for the construction of certain <i>unitary</i> symmetries, which imply the orthogonality of the duality functions. In the case of the quantum group <span>\\(\\mathcal {U}_q(\\mathfrak {gl}_{n+1})\\)</span>, the result is a nested multivariate <i>q</i>-Krawtchouk duality for the <i>n</i>-species ASEP<span>\\((q,\\varvec{\\theta }) \\)</span>. The method also applies to other quantized simple Lie algebras and to stochastic vertex models. As a probabilistic application of the duality relation found, we provide the explicit formula of the <i>q</i>-shifted factorial moments (namely the <i>q</i>-analogue of the Pochhammer symbol) for the two-species <i>q</i>-TAZRP (totally asymmetric zero range process).\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-04979-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a general method to produce orthogonal polynomial dualities from the \(^*\)-bialgebra structure of Drinfeld–Jimbo quantum groups. The \(^*\)-structure allows for the construction of certain unitary symmetries, which imply the orthogonality of the duality functions. In the case of the quantum group \(\mathcal {U}_q(\mathfrak {gl}_{n+1})\), the result is a nested multivariate q-Krawtchouk duality for the n-species ASEP\((q,\varvec{\theta }) \). The method also applies to other quantized simple Lie algebras and to stochastic vertex models. As a probabilistic application of the duality relation found, we provide the explicit formula of the q-shifted factorial moments (namely the q-analogue of the Pochhammer symbol) for the two-species q-TAZRP (totally asymmetric zero range process).

Abstract Image

Abstract Image

通过高阶量子群的$$^*$$-代数结构实现多物种 ASEP $$(q,\varvec{\theta })$$ 和高旋顶点模型的正交多项式对偶性和单元对称性
我们提出了一种从 Drinfeld-Jimbo 量子群的\(^*\)-双代数结构中产生正交多项式对偶的一般方法。(^*\)-结构允许构造某些单元对称性,这意味着对偶函数的正交性。在量子群(\mathcal {U}_q(\mathfrak {gl}_{n+1})的情况下,结果是n种ASEP\((q,\varvec\{theta }) \)的嵌套多变量q-Krawtchouk对偶性。)该方法也适用于其他量化的简单李代数和随机顶点模型。作为所发现的对偶关系的概率应用,我们提供了双物种 q-TAZRP(完全非对称零范围过程)的 q 移位阶乘矩(即 Pochhammer 符号的 q-analogue )的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信