2D Dilaton Gravity and the Weil–Petersson Volumes with Conical Defects

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Lorenz Eberhardt, Gustavo J. Turiaci
{"title":"2D Dilaton Gravity and the Weil–Petersson Volumes with Conical Defects","authors":"Lorenz Eberhardt,&nbsp;Gustavo J. Turiaci","doi":"10.1007/s00220-024-04964-1","DOIUrl":null,"url":null,"abstract":"<div><p>We derive the Weil–Petersson measure on the moduli space of hyperbolic surfaces with defects of arbitrary opening angles and use this to compute its volume. We conjecture a matrix integral computing the corresponding volumes and confirm agreement in simple cases. We combine this mathematical result with the equivariant localization approach to Jackiw–Teitelboim gravity to justify a proposed exact solution of pure 2d dilaton gravity for a large class of dilaton potentials.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-04964-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the Weil–Petersson measure on the moduli space of hyperbolic surfaces with defects of arbitrary opening angles and use this to compute its volume. We conjecture a matrix integral computing the corresponding volumes and confirm agreement in simple cases. We combine this mathematical result with the equivariant localization approach to Jackiw–Teitelboim gravity to justify a proposed exact solution of pure 2d dilaton gravity for a large class of dilaton potentials.

Abstract Image

Abstract Image

具有锥形缺陷的二维迪拉顿引力和魏尔-彼得森卷
我们推导出具有任意开口角缺陷的双曲面模空间上的魏尔-彼得森度量,并以此计算其体积。我们猜想了计算相应体积的矩阵积分,并确认了在简单情况下的一致性。我们将这一数学结果与杰克维-泰特博伊姆引力的等变局部化方法结合起来,证明了针对一大类稀拉顿势提出的纯二维稀拉顿引力精确解的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信