Propagation for Schrödinger Operators with Potentials Singular Along a Hypersurface

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jeffrey Galkowski, Jared Wunsch
{"title":"Propagation for Schrödinger Operators with Potentials Singular Along a Hypersurface","authors":"Jeffrey Galkowski,&nbsp;Jared Wunsch","doi":"10.1007/s00205-024-01965-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the propagation of defect measures for Schrödinger operators <span>\\(-h^2\\Delta _g+V\\)</span> on a Riemannian manifold (<i>M</i>, <i>g</i>) of dimension <i>n</i> with <i>V</i> having conormal singularities along a hypersurface <i>Y</i> in the sense that derivatives along vector fields tangential to <i>Y</i> preserve the regularity of <i>V</i>. We show that the standard propagation theorem holds for bicharacteristics travelling transversally to the surface <i>Y</i> whenever the potential is absolutely continuous. Furthermore, even when bicharacteristics are tangential to <i>Y</i> at exactly first order, as long as the potential has an absolutely continuous first derivative, standard propagation continues to hold.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01965-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01965-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the propagation of defect measures for Schrödinger operators \(-h^2\Delta _g+V\) on a Riemannian manifold (Mg) of dimension n with V having conormal singularities along a hypersurface Y in the sense that derivatives along vector fields tangential to Y preserve the regularity of V. We show that the standard propagation theorem holds for bicharacteristics travelling transversally to the surface Y whenever the potential is absolutely continuous. Furthermore, even when bicharacteristics are tangential to Y at exactly first order, as long as the potential has an absolutely continuous first derivative, standard propagation continues to hold.

具有沿超表面奇异势的薛定谔算子的传播
在本文中,我们研究了薛定谔算子 \(-h^2\Delta _g+V\)在维数为 n 的黎曼流形 (M, g) 上的缺陷度量的传播,其中 V 具有沿超曲面 Y 的共常奇点,即沿切向 Y 的向量场的导数保持了 V 的正则性。此外,即使当双特性恰好一阶切向 Y 时,只要势具有绝对连续的一阶导数,标准传播定理仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信