The effect of TFAP2A/ANXA8 axis on ferroptosis of cervical squamous cell carcinoma (CESC) in vitro

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuehua Sheng, Huiqing Ding, Jiaqing Zhou, Yuejing Wu, Kejun Xu, Fan Yang, Yongming Du
{"title":"The effect of TFAP2A/ANXA8 axis on ferroptosis of cervical squamous cell carcinoma (CESC) in vitro","authors":"Yuehua Sheng, Huiqing Ding, Jiaqing Zhou, Yuejing Wu, Kejun Xu, Fan Yang, Yongming Du","doi":"10.1007/s10616-024-00619-0","DOIUrl":null,"url":null,"abstract":"<p>Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe<sup>2+</sup> concentration assay showed no significant correlation between <i>ANXA8</i> gene knockdown and intracellular Fe<sup>2+</sup> concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of <i>ANXA8</i> did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of <i>ANXA8</i>, which plays a role in regulating cell ferroptosis. The knockdown of <i>TFAP2A</i> significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by <i>ANXA8</i> overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"49 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00619-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe2+ concentration assay showed no significant correlation between ANXA8 gene knockdown and intracellular Fe2+ concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of ANXA8 did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of ANXA8, which plays a role in regulating cell ferroptosis. The knockdown of TFAP2A significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by ANXA8 overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.

Abstract Image

TFAP2A/ANXA8 轴对体外宫颈鳞状细胞癌(CESC)铁败坏的影响
尽管Annexin家族成员Annexin A8(ANXA8)在各种恶性肿瘤中上调,但其在宫颈鳞状细胞癌(CESC)中的潜在作用和相关机制仍不清楚。在这里,我们观察到 CESC 细胞中 ANXA8 的表达明显升高。抑制ANXA8会增加CESC细胞对Erastin和索拉非尼诱导的铁中毒的敏感性,而对DPI7和DPI10诱导的铁中毒影响很小。Fe2+浓度检测结果显示,ANXA8基因敲除与铁变态反应诱导剂诱导的细胞内Fe2+浓度无明显相关性。Western印迹分析表明,在铁变态诱导条件下,ANXA8基因敲除不会改变ACSL4和LPCAT的水平,但会导致铁变态诱导剂诱导的细胞内GSH水平降低。随后,我们发现TFAP2A是ANXA8的上游转录因子,在调控细胞铁变态反应中发挥作用。敲除 TFAP2A 会显著升高 MDA 水平,并在铁突变诱导剂作用下降低 GSH 水平,从而抑制细胞铁突变。然而,这种抑制作用可以通过过表达 ANXA8 而逆转。因此,我们的研究表明,TFAP2A/ANXA8轴通过介导Xc系统中GSH的合成,对CESC细胞的铁突变进行调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信