Yuehua Sheng, Huiqing Ding, Jiaqing Zhou, Yuejing Wu, Kejun Xu, Fan Yang, Yongming Du
{"title":"The effect of TFAP2A/ANXA8 axis on ferroptosis of cervical squamous cell carcinoma (CESC) in vitro","authors":"Yuehua Sheng, Huiqing Ding, Jiaqing Zhou, Yuejing Wu, Kejun Xu, Fan Yang, Yongming Du","doi":"10.1007/s10616-024-00619-0","DOIUrl":null,"url":null,"abstract":"<p>Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe<sup>2+</sup> concentration assay showed no significant correlation between <i>ANXA8</i> gene knockdown and intracellular Fe<sup>2+</sup> concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of <i>ANXA8</i> did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of <i>ANXA8</i>, which plays a role in regulating cell ferroptosis. The knockdown of <i>TFAP2A</i> significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by <i>ANXA8</i> overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00619-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe2+ concentration assay showed no significant correlation between ANXA8 gene knockdown and intracellular Fe2+ concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of ANXA8 did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of ANXA8, which plays a role in regulating cell ferroptosis. The knockdown of TFAP2A significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by ANXA8 overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.