{"title":"A robust stability criterion in the one-dimensional subdiffusion equation with Caputo–Fabrizio fractional derivative","authors":"R. Temoltzi-Ávila","doi":"10.1007/s11587-024-00861-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a robust stability criterion for the one-dimensional subdiffusion equation with Caputo–Fabrizio fractional derivative. The criterion is obtained by extending a concept of stability under constant-acting perturbations that is regularly applied to systems of differential equations of integer order. We assume the existence of uncertainty in the subdiffusion equation due to the effect of external sources that are represented by Fourier series whose generalized Fourier coefficients are absolutely continuous and bounded functions. The results obtained suggest that the robust stability criterion allows us to guarantee that the solution of the subdiffusion equation, as well as its Caputo–Fabrizio fractional derivative and its first partial derivative with respect to the longitudinal axis, are bounded by a constant whose value is initially established. The results obtained are illustrated numerically.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00861-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a robust stability criterion for the one-dimensional subdiffusion equation with Caputo–Fabrizio fractional derivative. The criterion is obtained by extending a concept of stability under constant-acting perturbations that is regularly applied to systems of differential equations of integer order. We assume the existence of uncertainty in the subdiffusion equation due to the effect of external sources that are represented by Fourier series whose generalized Fourier coefficients are absolutely continuous and bounded functions. The results obtained suggest that the robust stability criterion allows us to guarantee that the solution of the subdiffusion equation, as well as its Caputo–Fabrizio fractional derivative and its first partial derivative with respect to the longitudinal axis, are bounded by a constant whose value is initially established. The results obtained are illustrated numerically.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.