Enumerating Calabi-Yau Manifolds: Placing Bounds on the Number of Diffeomorphism Classes in the Kreuzer-Skarke List

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Aditi Chandra, Andrei Constantin, Cristofero S. Fraser-Taliente, Thomas R. Harvey, Andre Lukas
{"title":"Enumerating Calabi-Yau Manifolds: Placing Bounds on the Number of Diffeomorphism Classes in the Kreuzer-Skarke List","authors":"Aditi Chandra,&nbsp;Andrei Constantin,&nbsp;Cristofero S. Fraser-Taliente,&nbsp;Thomas R. Harvey,&nbsp;Andre Lukas","doi":"10.1002/prop.202300264","DOIUrl":null,"url":null,"abstract":"<p>The diffeomorphism class of simply connected smooth Calabi-Yau threefolds with torsion-free cohomology is determined via certain basic topological invariants: the Hodge numbers, the triple intersection form, and the second Chern class. In the present paper, we shed some light on this classification by placing bounds on the number of diffeomorphism classes present in the set of smooth Calabi-Yau threefolds constructed from the Kreuzer-Skarke (KS) list of reflexive polytopes up to Picard number six. The main difficulty arises from the comparison of triple intersection numbers and divisor integrals of the second Chern class up to basis transformations. By using certain basis-independent invariants, some of which appear here for the first time, we are able to place lower bounds on the number of classes. Upper bounds are obtained by explicitly identifying basis transformations, using constraints related to the index of line bundles. Extrapolating our results, we conjecture that the favorable entries of the KS list of reflexive polytopes lead to some <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>400</mn>\n </msup>\n <annotation>$10^{400}$</annotation>\n </semantics></math> diffeomorphically distinct Calabi-Yau threefolds.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300264","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300264","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The diffeomorphism class of simply connected smooth Calabi-Yau threefolds with torsion-free cohomology is determined via certain basic topological invariants: the Hodge numbers, the triple intersection form, and the second Chern class. In the present paper, we shed some light on this classification by placing bounds on the number of diffeomorphism classes present in the set of smooth Calabi-Yau threefolds constructed from the Kreuzer-Skarke (KS) list of reflexive polytopes up to Picard number six. The main difficulty arises from the comparison of triple intersection numbers and divisor integrals of the second Chern class up to basis transformations. By using certain basis-independent invariants, some of which appear here for the first time, we are able to place lower bounds on the number of classes. Upper bounds are obtained by explicitly identifying basis transformations, using constraints related to the index of line bundles. Extrapolating our results, we conjecture that the favorable entries of the KS list of reflexive polytopes lead to some 10 400 $10^{400}$ diffeomorphically distinct Calabi-Yau threefolds.

Abstract Image

枚举卡拉比-尤(Calabi-Yau)流形:为克鲁泽-斯卡尔克列表中的衍射类数量设定界限
具有无扭转同调的简单连接光滑卡拉比-尤三折叠的衍射类是通过某些基本拓扑不变式确定的:霍奇数、三重交点形式和第二Chern类。在本文中,我们通过对由反折多面体的 Kreuzer-Skarke (KS) 列表(直到 Picard 数字 6)构建的光滑 Calabi-Yau 三折中存在的衍射类的数量进行限制,对这一分类进行了一些说明。主要的困难来自于三重交点数和第二Chern类的除数积分(直到基变换)的比较。通过使用某些与基础无关的不变式(其中一些在此首次出现),我们能够对类的数量给出下限。利用与线束索引相关的约束条件,通过明确识别基变换,我们可以得到上界。根据我们的推断,我们猜想反折多面体 KS 列表中的有利条目会导致一些差异形态上不同的 Calabi-Yau 三折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信