{"title":"The Necroptotic Process-Related Signature Predicts Immune Infiltration and Drug Sensitivity in Kidney Renal Papillary Cell Carcinoma","authors":"Wenfeng Lin, Ruizhi Xue, Hideo Ueki, Peng Huang","doi":"10.2174/0115680096286503240321040556","DOIUrl":null,"url":null,"abstract":"Background: It remains controversial whether the current subtypes of kidney renal papillary cell carcinoma (KIRP) can be used to predict the prognosis independently. Objective: This observational study aimed to identify a risk signature based on necroptotic pro-cess-related genes (NPRGs) in KIRP. Methods: In the training cohort, LASSO regression was applied to construct the risk signature from 158 NPRGs, followed by the analysis of Overall Survival (OS) using the Kaplan-Meier method. The signature accuracy was evaluated by the Receiver Operating Characteristic (ROC) curve, which was further validated by the test cohort. Wilcoxon test was used to compare the expressions of immune-related genes, neoantigen genes, and immune infiltration between differ-ent risk groups, while the correlation test was performed between NPRGs expressions and drug sensitivity. Gene set enrichment analysis was used to investigate the NPRGs' signature’s biologi-cal functions. Results: We finally screened out 4-NPRGs (BIRC3, CAMK2B, PYGM, and TRADD) for con-structing the risk signature with the area under the ROC curve (AUC) reaching about 0.8. The risk score could be used as an independent OS predictor. Consistent with the enriched signaling, the NPRGs signature was found to be closely associated with neoantigen, immune cell infiltration, and immune-related functions. Based on NPRGs expressions, we also predicted multiple drugs potentially sensitive or resistant to treatment. Conclusion: The novel 4-NPRGs risk signature can predict the prognosis, immune infiltration, and therapeutic sensitivity of KIRP.","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096286503240321040556","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: It remains controversial whether the current subtypes of kidney renal papillary cell carcinoma (KIRP) can be used to predict the prognosis independently. Objective: This observational study aimed to identify a risk signature based on necroptotic pro-cess-related genes (NPRGs) in KIRP. Methods: In the training cohort, LASSO regression was applied to construct the risk signature from 158 NPRGs, followed by the analysis of Overall Survival (OS) using the Kaplan-Meier method. The signature accuracy was evaluated by the Receiver Operating Characteristic (ROC) curve, which was further validated by the test cohort. Wilcoxon test was used to compare the expressions of immune-related genes, neoantigen genes, and immune infiltration between differ-ent risk groups, while the correlation test was performed between NPRGs expressions and drug sensitivity. Gene set enrichment analysis was used to investigate the NPRGs' signature’s biologi-cal functions. Results: We finally screened out 4-NPRGs (BIRC3, CAMK2B, PYGM, and TRADD) for con-structing the risk signature with the area under the ROC curve (AUC) reaching about 0.8. The risk score could be used as an independent OS predictor. Consistent with the enriched signaling, the NPRGs signature was found to be closely associated with neoantigen, immune cell infiltration, and immune-related functions. Based on NPRGs expressions, we also predicted multiple drugs potentially sensitive or resistant to treatment. Conclusion: The novel 4-NPRGs risk signature can predict the prognosis, immune infiltration, and therapeutic sensitivity of KIRP.
期刊介绍:
Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes.
Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer.
As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.