{"title":"New criteria for $$\\sigma $$ -subnormality in $$\\sigma $$ -solvable finite groups","authors":"Julian Kaspczyk, Fawaz Aseeri","doi":"10.1007/s11587-024-00855-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathbb {P}\\)</span> be the set of all prime numbers, <i>I</i> be a set and <span>\\(\\sigma = \\lbrace \\sigma _i \\mid i \\in I \\rbrace \\)</span> be a partition of <span>\\(\\mathbb {P}\\)</span>. A finite group is said to be <span>\\(\\sigma \\)</span>-<i>primary</i> if it is a <span>\\(\\sigma _i\\)</span>-group for some <span>\\(i \\in I\\)</span>, and we say that a finite group is <span>\\(\\sigma \\)</span>-<i>solvable</i> if all its chief factors are <span>\\(\\sigma \\)</span>-primary. A subgroup <i>H</i> of a finite group <i>G</i> is said to be <span>\\(\\sigma \\)</span>-<i>subnormal</i> in <i>G</i> if there is a chain <span>\\(H = H_0 \\le H_1 \\le \\dots \\le H_n = G\\)</span> of subgroups of <i>G</i> such that <span>\\(H_{i-1}\\)</span> is normal in <span>\\(H_i\\)</span> or <span>\\(H_i/(H_{i-1})_{H_i}\\)</span> is <span>\\(\\sigma \\)</span>-primary for all <span>\\(1 \\le i \\le n\\)</span>. Given subgroups <i>H</i> and <i>A</i> of a <span>\\(\\sigma \\)</span>-solvable finite group <i>G</i>, we prove two criteria for <i>H</i> to be <span>\\(\\sigma \\)</span>-subnormal in <span>\\(\\langle H, A \\rangle \\)</span>. Our criteria extend classical subnormality criteria of Fumagalli [5], which themselves generalize a classical subnormality criterion of Wielandt [13].</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00855-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\mathbb {P}\) be the set of all prime numbers, I be a set and \(\sigma = \lbrace \sigma _i \mid i \in I \rbrace \) be a partition of \(\mathbb {P}\). A finite group is said to be \(\sigma \)-primary if it is a \(\sigma _i\)-group for some \(i \in I\), and we say that a finite group is \(\sigma \)-solvable if all its chief factors are \(\sigma \)-primary. A subgroup H of a finite group G is said to be \(\sigma \)-subnormal in G if there is a chain \(H = H_0 \le H_1 \le \dots \le H_n = G\) of subgroups of G such that \(H_{i-1}\) is normal in \(H_i\) or \(H_i/(H_{i-1})_{H_i}\) is \(\sigma \)-primary for all \(1 \le i \le n\). Given subgroups H and A of a \(\sigma \)-solvable finite group G, we prove two criteria for H to be \(\sigma \)-subnormal in \(\langle H, A \rangle \). Our criteria extend classical subnormality criteria of Fumagalli [5], which themselves generalize a classical subnormality criterion of Wielandt [13].
让 \(\mathbb {P}\) 是所有素数的集合,I 是一个集合,并且 \(\sigma = \lbrace \sigma _i \mid i \in I \rbrace \) 是 \(\mathbb {P}\) 的一个分区。如果一个有限群对于某个在I中的i来说是一个(\sigma _i\)群,那么这个有限群就被称为是(\sigma\)主群;如果一个有限群的所有主因都是\(\sigma\)主群,那么我们就说这个有限群是(\sigma\)可解的。如果有限群 G 的一个子群 H 存在一个 G 的子群链 \(H = H_0 \le H_1 \le \le H_dots \le H_n = G\) 使得 \(H_{i- 1}\) 在 G 中是正常的,那么这个有限群 G 的一个子群 H 在 G 中是正常的。1}\)is normal in \(H_i\) or \(H_i/(H_{i-1})_{H_i}\) is \(\sigma\)-primary for all \(1 \le i \le n\).给定一个可解有限群 G 的子群 H 和 A,我们证明了两个标准,即 H 在 \(angle H, A \rangle \)中是 \(\sigma \)-次正态的。我们的标准扩展了 Fumagalli [5] 的经典亚正态性标准,而这些标准本身又概括了 Wielandt [13] 的经典亚正态性标准。
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.