On commuting automorphisms of some groups

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nazila Azimi Shahrabi, Mehri Akhavan Malayeri
{"title":"On commuting automorphisms of some groups","authors":"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri","doi":"10.1007/s11587-024-00853-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a group. If the set <span>\\({\\mathcal {A}}(G)=\\lbrace \\alpha \\in {\\textit{Aut}}(G): x\\alpha (x)=\\alpha (x)x\\; \\textit{for all}\\; x\\in G\\rbrace \\)</span> forms a subgroup of <span>\\({\\textit{Aut}}(G)\\)</span>, then <i>G</i> is called <span>\\({\\mathcal {A}}\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\({\\mathcal {A}}\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-groups with <span>\\(\\vert G/G^{\\prime }\\vert = p^{4}\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\(\\vert G/G^{\\prime }\\vert \\le p^{3}\\)</span> is an <span>\\({\\mathcal {A}}\\)</span>-group. Using these results, we show that there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group <i>G</i> of order <span>\\(p^{n}\\)</span> for all <span>\\(n\\ge 4\\)</span> such that <span>\\({\\mathcal {A}}(G)\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00853-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a group. If the set \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) forms a subgroup of \({\textit{Aut}}(G)\), then G is called \({\mathcal {A}}\)-group. In this paper, we prove that a metacyclic group is an \({\mathcal {A}}\)-group. Also, we show that, for any positive integer n and any prime number p, there exists a finite \({\mathcal {A}}\) p-group of nilpotency class n. Since there exist finite non \({\mathcal {A}}\) p-groups with \(\vert G/G^{\prime }\vert = p^{4}\), we find suitable conditions implying that a finite p-group with \(\vert G/G^{\prime }\vert \le p^{3}\) is an \({\mathcal {A}}\)-group. Using these results, we show that there exists a finite \({\mathcal {A}}\) p-group G of order \(p^{n}\) for all \(n\ge 4\) such that \({\mathcal {A}}(G)\) is equal to the central automorphisms group of G. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.

论某些群的换向自形
设 G 是一个群。如果集合 \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) 构成了 \({\textit{Aut}}(G)\) 的一个子群,那么 G 就叫做 \({\mathcal {A}}\)- 群。本文将证明元循环群是一个 ({\mathcal {A}})群。同时,我们还证明了,对于任意正整数 n 和任意素数 p,都存在一个无幂级数 n 的有限的 \({\mathcal {A}}\) p 群。由于存在有限的非\({\mathcal {A}}\) p群,其\(\vert G/G^{\prime }\vert = p^{4}\),我们找到了合适的条件,意味着有限的p群,其\(\vert G/G^{\prime }\vert \le p^{3}\)是一个\({\mathcal {A}}\)群。利用这些结果,我们证明了对于所有的 \(n\ge 4\) 都存在一个阶为 \(p^{n}\) 的有限的 \({\mathcal {A}}(G)\) p 群 G,使得 \({\mathcal {A}}(G)\) 等于 G 的中心自变群。最后,我们利用群的半间接积和花环积来得到合适的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信