{"title":"Corneal subbasal nerve plexus reinnervation and stromal cell morphology with different cap thicknesses in small incision lenticule extraction","authors":"Yanzheng Song, Shijing Deng, Xiaotong Lyv, Yushan Xu, Fengju Zhang, Ning Guo","doi":"10.1186/s40662-024-00381-6","DOIUrl":null,"url":null,"abstract":"The corneal cap thickness is a vital parameter designed in small incision lenticule extraction (SMILE). The purpose was to investigate the changes in corneal subbasal nerve plexus (SNP) and stromal cells with different cap thicknesses and evaluate the optimized design for the surgery. In this prospective, comparative, non-randomized study, a total of 108 eyes of 54 patients who underwent SMILE were allocated into three groups with different corneal cap thicknesses (110 μm, 120 μm or 130 μm group). The SNP and stromal cell morphological changes obtained from in vivo corneal confocal microscopy (IVCCM) along with their refractive outcomes were collected at 1 week, 1 month, 3 months and 6 months postoperatively. One-way analysis of variance (ANOVA) was used to compare the parameters among the three groups. The SNPs in the three groups all decreased after surgery and revealed a gradual increasing trend during the 6-month follow-up. The values of the quantitative nerve metrics were significantly lower in the 110 μm group than in the 120 μm and 130 μm groups, especially at 1 week postoperatively. No difference was detected between the 120 μm and 130 μm groups at any time point. Both Langerhans cells and keratocytes were activated after surgery, and the activation was alleviated during the follow-up. The SMILE surgeries with 110 μm, 120 μm or 130 μm cap thickness design achieved good efficacy, safety, accuracy and stability for moderate to high myopic correction while the thicker corneal cap was more beneficial for corneal nerve regeneration.","PeriodicalId":12194,"journal":{"name":"Eye and Vision","volume":"49 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00381-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The corneal cap thickness is a vital parameter designed in small incision lenticule extraction (SMILE). The purpose was to investigate the changes in corneal subbasal nerve plexus (SNP) and stromal cells with different cap thicknesses and evaluate the optimized design for the surgery. In this prospective, comparative, non-randomized study, a total of 108 eyes of 54 patients who underwent SMILE were allocated into three groups with different corneal cap thicknesses (110 μm, 120 μm or 130 μm group). The SNP and stromal cell morphological changes obtained from in vivo corneal confocal microscopy (IVCCM) along with their refractive outcomes were collected at 1 week, 1 month, 3 months and 6 months postoperatively. One-way analysis of variance (ANOVA) was used to compare the parameters among the three groups. The SNPs in the three groups all decreased after surgery and revealed a gradual increasing trend during the 6-month follow-up. The values of the quantitative nerve metrics were significantly lower in the 110 μm group than in the 120 μm and 130 μm groups, especially at 1 week postoperatively. No difference was detected between the 120 μm and 130 μm groups at any time point. Both Langerhans cells and keratocytes were activated after surgery, and the activation was alleviated during the follow-up. The SMILE surgeries with 110 μm, 120 μm or 130 μm cap thickness design achieved good efficacy, safety, accuracy and stability for moderate to high myopic correction while the thicker corneal cap was more beneficial for corneal nerve regeneration.
期刊介绍:
Eye and Vision is an open access, peer-reviewed journal for ophthalmologists and visual science specialists. It welcomes research articles, reviews, methodologies, commentaries, case reports, perspectives and short reports encompassing all aspects of eye and vision. Topics of interest include but are not limited to: current developments of theoretical, experimental and clinical investigations in ophthalmology, optometry and vision science which focus on novel and high-impact findings on central issues pertaining to biology, pathophysiology and etiology of eye diseases as well as advances in diagnostic techniques, surgical treatment, instrument updates, the latest drug findings, results of clinical trials and research findings. It aims to provide ophthalmologists and visual science specialists with the latest developments in theoretical, experimental and clinical investigations in eye and vision.