{"title":"The Influence of Surface Roughness on Photonic-Nanojet Parameters of Dielectric Microspheres","authors":"Yu. E. Geints, E. K. Panina","doi":"10.1134/S0030400X24700097","DOIUrl":null,"url":null,"abstract":"<p>All naturally found and man-made solid microparticles have a rough surface. Upon optical radiation scattering from such particles, in addition to geometric shape, the surface texture becomes an important morphological factor of the scatterer that determines its optical properties. We present the results of numerical FDTD simulation of an optical-wave focusing by a dielectric microsphere with a randomly distributed surface roughness. The cases of azimuthally symmetric and asymmetric distortions of the particle surface are analyzed. It is demonstrated that the key parameters of the near-field focal region (intensity, longitudinal and transverse dimensions, focal distance) referred to as the photonic nanojet (PNJ) turn out to be sensitive to changes in the sphere-surface texture. In the process, two parameters, the peak intensity of the PNJ and its length, experience the largest changes. The influence of the optical contrast (the relative refractive index) of the microsphere that scatters radiation on PNJ characteristics is analyzed, and the possibility of reducing the influence of surface roughness on the quality of the near-field focusing by means of microsphere watering (water-uptake) is demonstrated.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"131 11","pages":"1113 - 1121"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X24700097","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
All naturally found and man-made solid microparticles have a rough surface. Upon optical radiation scattering from such particles, in addition to geometric shape, the surface texture becomes an important morphological factor of the scatterer that determines its optical properties. We present the results of numerical FDTD simulation of an optical-wave focusing by a dielectric microsphere with a randomly distributed surface roughness. The cases of azimuthally symmetric and asymmetric distortions of the particle surface are analyzed. It is demonstrated that the key parameters of the near-field focal region (intensity, longitudinal and transverse dimensions, focal distance) referred to as the photonic nanojet (PNJ) turn out to be sensitive to changes in the sphere-surface texture. In the process, two parameters, the peak intensity of the PNJ and its length, experience the largest changes. The influence of the optical contrast (the relative refractive index) of the microsphere that scatters radiation on PNJ characteristics is analyzed, and the possibility of reducing the influence of surface roughness on the quality of the near-field focusing by means of microsphere watering (water-uptake) is demonstrated.
期刊介绍:
Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.