Nico L. Grotkopp, Marcella Horst, Georg Garnweitner
{"title":"Effect of ether medium in LiTFSI and LiFSI-based liquid electrolytes for lithium–sulfur batteries","authors":"Nico L. Grotkopp, Marcella Horst, Georg Garnweitner","doi":"10.1002/bte2.20240002","DOIUrl":null,"url":null,"abstract":"<p>Liquid battery electrolytes are utilized in most battery systems to date as they provide improved electrode contact and ionic conductivity compared to solid electrolytes; however, they pose major challenges regarding safety. Being highly flammable, toxic, and volatile, leakage of such a liquid electrolyte is always considered a major safety risk. Hence, the improvement of liquid electrolytes remains an important goal, especially for high gravimetric energy battery systems like the lithium–sulfur battery (LSB), which is considered a suitable battery type to enable fully electric-powered aviation. Here, a study on the effects of a variation of the electrolyte media and salt was conducted to establish an inexpensive alternative liquid electrolyte system to the state-of-the-art DOL/DME electrolyte of LSB. The combination of DEGMEE and LiFSI led to the best cycling performance showing an increase in cycling stability (110 cycles at 97% Coulombic efficiency) and specific capacity (~500 mAh g<sup>−1</sup> in the 110th cycle) at a moderately high C-rate of 0.25 C, which for our coin cell system translates to a moderate current of ~1.8 mA (~1.2 mA cm<sup>−2</sup>).</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid battery electrolytes are utilized in most battery systems to date as they provide improved electrode contact and ionic conductivity compared to solid electrolytes; however, they pose major challenges regarding safety. Being highly flammable, toxic, and volatile, leakage of such a liquid electrolyte is always considered a major safety risk. Hence, the improvement of liquid electrolytes remains an important goal, especially for high gravimetric energy battery systems like the lithium–sulfur battery (LSB), which is considered a suitable battery type to enable fully electric-powered aviation. Here, a study on the effects of a variation of the electrolyte media and salt was conducted to establish an inexpensive alternative liquid electrolyte system to the state-of-the-art DOL/DME electrolyte of LSB. The combination of DEGMEE and LiFSI led to the best cycling performance showing an increase in cycling stability (110 cycles at 97% Coulombic efficiency) and specific capacity (~500 mAh g−1 in the 110th cycle) at a moderately high C-rate of 0.25 C, which for our coin cell system translates to a moderate current of ~1.8 mA (~1.2 mA cm−2).