Experimental analysis of a heat pipe-assisted flexible heat transfer device

IF 1.7 4区 工程技术 Q3 MECHANICS
Kannan Pandi, V. M. Jaganathan
{"title":"Experimental analysis of a heat pipe-assisted flexible heat transfer device","authors":"Kannan Pandi, V. M. Jaganathan","doi":"10.1007/s00231-024-03475-y","DOIUrl":null,"url":null,"abstract":"<p>The present study elucidates the experimental investigations on a novel flexible heat transfer device that can be used in a wide range of modern electronic device cooling applications which demand flexibility. The objective of the present is to address the challenges encountered by current flexible heat transfer devices, including concerns related to out-gassing and the permeation of non-condensable gases. These issues ultimately contribute to the deterioration of the long-term dependability of such devices. The present study provides an analysis of the steady-state performance of the flexible heat transfer device under various heat loads and orientations (0°, 45°, and 90° angles). Using COMSOL Multiphysics 6.1, numerical simulations are performed to explain the dynamics of heat transfer of the flexible heat transfer device developed. The performance is evaluated in terms of thermal resistance, equivalent thermal conductivity, and average temperature difference across the evaporator and condenser. Under steady-state operation, it has been determined that the flexible heat transfer device exhibits a minimum thermal resistance of 2.3 °C/W. Additionally, a maximum effective thermal conductivity of 2407 W/mK has been reported for a bending angle of 45°, which is six times more than relevant flexible heat transfer devices, such as copper thermal straps.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03475-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study elucidates the experimental investigations on a novel flexible heat transfer device that can be used in a wide range of modern electronic device cooling applications which demand flexibility. The objective of the present is to address the challenges encountered by current flexible heat transfer devices, including concerns related to out-gassing and the permeation of non-condensable gases. These issues ultimately contribute to the deterioration of the long-term dependability of such devices. The present study provides an analysis of the steady-state performance of the flexible heat transfer device under various heat loads and orientations (0°, 45°, and 90° angles). Using COMSOL Multiphysics 6.1, numerical simulations are performed to explain the dynamics of heat transfer of the flexible heat transfer device developed. The performance is evaluated in terms of thermal resistance, equivalent thermal conductivity, and average temperature difference across the evaporator and condenser. Under steady-state operation, it has been determined that the flexible heat transfer device exhibits a minimum thermal resistance of 2.3 °C/W. Additionally, a maximum effective thermal conductivity of 2407 W/mK has been reported for a bending angle of 45°, which is six times more than relevant flexible heat transfer devices, such as copper thermal straps.

Abstract Image

热管辅助柔性传热装置的实验分析
本研究阐明了对新型柔性传热装置的实验研究,该装置可广泛应用于对灵活性要求较高的现代电子设备冷却领域。本研究的目的是解决目前柔性传热设备所遇到的挑战,包括与排气和不可冷凝气体渗透有关的问题。这些问题最终会导致此类设备的长期可靠性下降。本研究分析了柔性传热装置在不同热负荷和方向(0°、45° 和 90°角)下的稳态性能。使用 COMSOL Multiphysics 6.1 进行了数值模拟,以解释所开发的柔性传热装置的传热动力学。根据热阻、等效热导率以及蒸发器和冷凝器的平均温差对其性能进行了评估。在稳态运行情况下,确定柔性传热装置的最小热阻为 2.3 ℃/W。此外,据报告,在弯曲角度为 45° 时,最大有效导热系数为 2407 W/mK,是铜导热带等相关柔性传热装置的六倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat and Mass Transfer
Heat and Mass Transfer 工程技术-力学
CiteScore
4.80
自引率
4.50%
发文量
148
审稿时长
8.0 months
期刊介绍: This journal serves the circulation of new developments in the field of basic research of heat and mass transfer phenomena, as well as related material properties and their measurements. Thereby applications to engineering problems are promoted. The journal is the traditional "Wärme- und Stoffübertragung" which was changed to "Heat and Mass Transfer" back in 1995.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信