{"title":"Applying Trust for Operational States of ICT-Enabled Power Grid Services","authors":"Michael Brand, Anand Narayan, Sebastian Lehnhoff","doi":"10.1145/3654672","DOIUrl":null,"url":null,"abstract":"<p>Digitalization enables the automation required to operate modern cyber-physical energy systems (CPESs), leading to a shift from hierarchical to organic systems. However, digitalization increases the number of factors affecting the state of a CPES (e.g., software bugs and cyber threats). In addition to established factors like functional correctness, others like security become relevant but are yet to be integrated into an operational viewpoint, i.e. a holistic perspective on the system state. Trust in organic computing is an approach to gain a holistic view of the state of systems. It consists of several facets (e.g., functional correctness, security, and reliability), which can be used to assess the state of CPES. Therefore, a trust assessment on all levels can contribute to a coherent state assessment. This paper focuses on the trust in ICT-enabled grid services in a CPES. These are essential for operating the CPES, and their performance relies on various data aspects like availability, timeliness, and correctness. This paper proposes to assess the trust in involved components and data to estimate data correctness, which is crucial for grid services. The assessment is presented considering two exemplary grid services, namely state estimation and coordinated voltage control. Furthermore, the interpretation of different trust facets is also discussed.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"2021 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654672","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Digitalization enables the automation required to operate modern cyber-physical energy systems (CPESs), leading to a shift from hierarchical to organic systems. However, digitalization increases the number of factors affecting the state of a CPES (e.g., software bugs and cyber threats). In addition to established factors like functional correctness, others like security become relevant but are yet to be integrated into an operational viewpoint, i.e. a holistic perspective on the system state. Trust in organic computing is an approach to gain a holistic view of the state of systems. It consists of several facets (e.g., functional correctness, security, and reliability), which can be used to assess the state of CPES. Therefore, a trust assessment on all levels can contribute to a coherent state assessment. This paper focuses on the trust in ICT-enabled grid services in a CPES. These are essential for operating the CPES, and their performance relies on various data aspects like availability, timeliness, and correctness. This paper proposes to assess the trust in involved components and data to estimate data correctness, which is crucial for grid services. The assessment is presented considering two exemplary grid services, namely state estimation and coordinated voltage control. Furthermore, the interpretation of different trust facets is also discussed.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.