Human neural stem cell secretome relieves endoplasmic reticulum stress-induced apoptosis and improves neuronal functions after traumatic brain injury in a rat model
Yating Ling, Murugan Ramalingam, Xiaorui Lv, Dongdong Niu, Yu Zeng, Yun Qiu, Yu Si, Tao Guo, Yinying Ni, Jingwen Zhang, Ziyu Wang, Hae-Won Kim, Jiabo Hu
{"title":"Human neural stem cell secretome relieves endoplasmic reticulum stress-induced apoptosis and improves neuronal functions after traumatic brain injury in a rat model","authors":"Yating Ling, Murugan Ramalingam, Xiaorui Lv, Dongdong Niu, Yu Zeng, Yun Qiu, Yu Si, Tao Guo, Yinying Ni, Jingwen Zhang, Ziyu Wang, Hae-Won Kim, Jiabo Hu","doi":"10.1007/s10735-024-10192-7","DOIUrl":null,"url":null,"abstract":"<div><p>Neural stem cell secretome (NSC-S) plays an important role in neuroprotection and recovery. Studies have shown that endoplasmic reticulum stress (ER stress) is involved in the progression of traumatic brain injury (TBI) and is a crucial cause of secondary damage and neuronal death after brain injury. Whether NSC-S is engaged in ER stress and ER stress-mediated neuronal apoptosis post-TBI has not been investigated. In the study, the Feeney SD male rat model was established. The results showed that NSC-S treatment significantly improved the behavior of rats with TBI. In addition, NSC-S relieved ER stress in TBI rats and was observed by transmission electron microscopy and western blot. The specific mechanism was further elucidated that restoration was achieved by alleviating the PERK-eIF2α pathway and thus protecting neurons from apoptosis. Notably, the discovery of calumenin (CALU) in NSC-S by liquid chromatography-tandem mass spectrometry (LC–MS/MS/MS) may be related to the protective effect of NSC-S on ER stress in neurons. Also, the mechanism by which it functions may be related to ubiquitination. In summary, NSC-S improved prognosis and ER stress in TBI rats and might be a promising treatment for relieving TBI.</p><h3>Graphical Abstract</h3><p>Neural stem cell secretome protects neurons from apoptosis through different pathways.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10192-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural stem cell secretome (NSC-S) plays an important role in neuroprotection and recovery. Studies have shown that endoplasmic reticulum stress (ER stress) is involved in the progression of traumatic brain injury (TBI) and is a crucial cause of secondary damage and neuronal death after brain injury. Whether NSC-S is engaged in ER stress and ER stress-mediated neuronal apoptosis post-TBI has not been investigated. In the study, the Feeney SD male rat model was established. The results showed that NSC-S treatment significantly improved the behavior of rats with TBI. In addition, NSC-S relieved ER stress in TBI rats and was observed by transmission electron microscopy and western blot. The specific mechanism was further elucidated that restoration was achieved by alleviating the PERK-eIF2α pathway and thus protecting neurons from apoptosis. Notably, the discovery of calumenin (CALU) in NSC-S by liquid chromatography-tandem mass spectrometry (LC–MS/MS/MS) may be related to the protective effect of NSC-S on ER stress in neurons. Also, the mechanism by which it functions may be related to ubiquitination. In summary, NSC-S improved prognosis and ER stress in TBI rats and might be a promising treatment for relieving TBI.
Graphical Abstract
Neural stem cell secretome protects neurons from apoptosis through different pathways.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.