Energy efficient Security Driven Scheduling for Real-Time Tasks through DVS-enabled Fog Networks

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Surendra Singh
{"title":"Energy efficient Security Driven Scheduling for Real-Time Tasks through DVS-enabled Fog Networks","authors":"Surendra Singh","doi":"10.1016/j.simpat.2024.102941","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of task scheduling for a multi-core processor in Fog networks, with a focus on security and energy efficiency is of great importance in real-time systems. Currently, scheduling algorithms designed for cluster computing environments utilize dynamic voltage scaling (DVS) to decrease CPU power consumption, albeit at the expense of performance. This problem becomes more pronounced when a real-time task requires robust security, resulting in heavily overloaded nodes (CPUs or computing systems) in a cluster computing environment. To address such challenges, a solution called “Energy efficient Security Driven Scheduling of Real-Time Tasks using DVS-enabled Fog Networks (ESDS)” has been proposed. The primary goal of ESDS is to dynamically adjust CPU voltages or frequencies based on the workload conditions of nodes in Fog networks, thereby achieving optimal trade-offs between security, scheduling, and energy consumption for real-time tasks. By dynamically reducing voltage or frequency levels, ESDS conserves energy while still meeting deadlines for both running and new tasks, especially during periods of high system workload. Comprehensive experiments have been carried out to compare the ESDS algorithm with established baseline algorithms, including MEG, MELV, MEHV, and AEES. These experiments affirm the originality and effectiveness of the ESDS algorithm.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000558","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The issue of task scheduling for a multi-core processor in Fog networks, with a focus on security and energy efficiency is of great importance in real-time systems. Currently, scheduling algorithms designed for cluster computing environments utilize dynamic voltage scaling (DVS) to decrease CPU power consumption, albeit at the expense of performance. This problem becomes more pronounced when a real-time task requires robust security, resulting in heavily overloaded nodes (CPUs or computing systems) in a cluster computing environment. To address such challenges, a solution called “Energy efficient Security Driven Scheduling of Real-Time Tasks using DVS-enabled Fog Networks (ESDS)” has been proposed. The primary goal of ESDS is to dynamically adjust CPU voltages or frequencies based on the workload conditions of nodes in Fog networks, thereby achieving optimal trade-offs between security, scheduling, and energy consumption for real-time tasks. By dynamically reducing voltage or frequency levels, ESDS conserves energy while still meeting deadlines for both running and new tasks, especially during periods of high system workload. Comprehensive experiments have been carried out to compare the ESDS algorithm with established baseline algorithms, including MEG, MELV, MEHV, and AEES. These experiments affirm the originality and effectiveness of the ESDS algorithm.

通过启用了 DVS 的雾网络为实时任务进行节能安全驱动调度
在实时系统中,雾网络中多核处理器的任务调度问题非常重要,其重点是安全性和能效。目前,为集群计算环境设计的调度算法利用动态电压缩放(DVS)来降低 CPU 功耗,但这是以牺牲性能为代价的。当实时任务需要强大的安全性时,这个问题就会变得更加突出,导致集群计算环境中的节点(CPU 或计算系统)严重超载。为了应对这些挑战,有人提出了一种名为 "使用支持 DVS 的雾网络(ESDS)的实时任务节能安全驱动调度 "的解决方案。ESDS 的主要目标是根据雾网络中节点的工作负载条件动态调整 CPU 电压或频率,从而在实时任务的安全性、调度和能耗之间实现最佳权衡。通过动态降低电压或频率水平,ESDS 在节约能源的同时,还能满足运行任务和新任务的截止日期要求,尤其是在系统工作负荷较高的时期。我们进行了全面的实验,将 ESDS 算法与 MEG、MELV、MEHV 和 AEES 等既定基准算法进行了比较。这些实验证实了 ESDS 算法的独创性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信