Low-dose cadmium telluride quantum dots trigger M1 polarization in macrophages through mTOR-mediated transcription factor EB activation

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Tingting Wei, Na Liu, Yongshuai Yao, Xiaoquan Huang, Zhihui Wang, Tianshu Wu, Ting Zhang, Yuying Xue, Meng Tang
{"title":"Low-dose cadmium telluride quantum dots trigger M1 polarization in macrophages through mTOR-mediated transcription factor EB activation","authors":"Tingting Wei,&nbsp;Na Liu,&nbsp;Yongshuai Yao,&nbsp;Xiaoquan Huang,&nbsp;Zhihui Wang,&nbsp;Tianshu Wu,&nbsp;Ting Zhang,&nbsp;Yuying Xue,&nbsp;Meng Tang","doi":"10.1016/j.impact.2024.100505","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 μM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 μM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1β proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"34 ","pages":"Article 100505"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000156","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 μM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 μM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1β proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.

Abstract Image

低剂量碲化镉量子点通过 mTOR 介导的转录因子 EB 激活引发巨噬细胞 M1 极化
量子点(QDs)的应用日益广泛,增加了与生物体的相互作用。炎症失衡是免疫毒性的一个重要表现。巨噬细胞能维持炎症平衡。研究发现,低剂量(5 μM)碲化镉 QDs(CdTe-QDs)会阻碍单核细胞-巨噬细胞的分化。CD11b 是巨噬细胞的表面标志物,在诱导过程中加入 CdTe-QDs 会导致 CD11b 表达下降。此外,将分化的 THP-1 巨噬细胞(dTHP-1)暴露于 5 μM CdTe-QDs 会导致 M1 极化的启动。这表现为巨噬细胞表面标志物 CD86 表达增加,NF-κB 和 IL-1β 蛋白水平升高。目前正在探索其潜在机制。转录因子 EB(TFEB)在免疫调节中起着重要作用,是自噬溶酶体途径的关键调节因子。暴露于 CdTe-QDs 后,在 dTHP-1 中观察到 TFEB 激活介导的自噬和 M1 极化同时发生。mTOR信号通路对CdTe-QDs诱导的TFEB活化起到了促进作用。然而,独立于 mTOR 的 TFEB 激活未能促进 M1 极化。这些结果表明,mTOR-TFEB 是增强 CdTe-QDs 生物相容性的一个有利靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信