A simplified machine learning product carbon footprint evaluation tool

IF 6.1 Q2 ENGINEERING, ENVIRONMENTAL
Silvio Lang, Bastian Engelmann, Andreas Schiffler, Jan Schmitt
{"title":"A simplified machine learning product carbon footprint evaluation tool","authors":"Silvio Lang,&nbsp;Bastian Engelmann,&nbsp;Andreas Schiffler,&nbsp;Jan Schmitt","doi":"10.1016/j.cesys.2024.100187","DOIUrl":null,"url":null,"abstract":"<div><p>On the way to climate neutrality manufacturing companies need to assess the Carbon dioxide (CO<sub>2</sub>) emissions of their products as a basis for emission reduction measures. The evaluate this so-called Product Carbon Footprint (PCF) life cycle analysis as a comprehensive method is applicable, but means great effort and requires interdisciplinary knowledge. Nevertheless, assumptions must still be made to assess the entire supply chain. To lower these burdens and provide a digital tool to estimate the PCF with less input parameter and data, we make use of machine learning techniques and develop an editorial framework called MINDFUL. This contribution shows its realization by providing the software architecture, underlying CO<sub>2</sub> factors, calculations and Machine Learning approach as well as the principles of its user experience. Our tool is validated within an industrial case study.</p></div>","PeriodicalId":34616,"journal":{"name":"Cleaner Environmental Systems","volume":"13 ","pages":"Article 100187"},"PeriodicalIF":6.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666789424000254/pdfft?md5=3a6305a5578dcdf33b5bb4f13acf306c&pid=1-s2.0-S2666789424000254-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666789424000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

On the way to climate neutrality manufacturing companies need to assess the Carbon dioxide (CO2) emissions of their products as a basis for emission reduction measures. The evaluate this so-called Product Carbon Footprint (PCF) life cycle analysis as a comprehensive method is applicable, but means great effort and requires interdisciplinary knowledge. Nevertheless, assumptions must still be made to assess the entire supply chain. To lower these burdens and provide a digital tool to estimate the PCF with less input parameter and data, we make use of machine learning techniques and develop an editorial framework called MINDFUL. This contribution shows its realization by providing the software architecture, underlying CO2 factors, calculations and Machine Learning approach as well as the principles of its user experience. Our tool is validated within an industrial case study.

简化的机器学习产品碳足迹评估工具
在实现气候中和的道路上,制造企业需要评估其产品的二氧化碳(CO2)排放量,以此作为减排措施的基础。评估这种所谓的产品碳足迹(PCF)生命周期分析作为一种全面的方法是适用的,但意味着巨大的努力,需要跨学科的知识。不过,要评估整个供应链,仍然必须做出假设。为了减轻这些负担,并提供一种数字化工具,以较少的输入参数和数据估算 PCF,我们利用机器学习技术开发了一个名为 MINDFUL 的编辑框架。本文通过提供软件架构、基本二氧化碳因素、计算和机器学习方法以及用户体验原则,展示了该框架的实现过程。我们的工具在一项工业案例研究中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Environmental Systems
Cleaner Environmental Systems Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
0.00%
发文量
32
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信