{"title":"Rock-hyrax: An energy efficient job scheduling using cluster of resources in cloud computing environment","authors":"Saurabh Singhal , Shabir Ali , Mohan Awasthy , Dhirendra Kumar Shukla , Rajesh Tiwari","doi":"10.1016/j.suscom.2024.100985","DOIUrl":null,"url":null,"abstract":"<div><p>In a cloud computing environment, job scheduling allows the service provider to schedule resources based on demand. Job scheduling must also ensure QoS, end-user satisfaction, and the efficient usage of resources. Cloud computing vendors assign virtualized computing resources to end-users based on job requirements that are dynamically scalable and pay-per-use. The assignment of jobs requires proper investigation and mapping of available resources. In this paper, we have proposed a novel job scheduling scheme based on Rock Hyrax. Our Rock Hyrax approach uses objective functions to map jobs to available resources. The objective function considers a variety of QoS parameters like makespan, response time and energy efficiency. Our method employs two key QoS parameters: makespan and energy consumption. The node behavior and characteristics, such as processing power, storage, and network connectivity to cluster similar resources, have also been considered for scheduling. An experimental setup is created for a thorough study of the proposal using CloudSim simulator. For both the jobs and virtual machines, static and dynamic scenarios for performance evaluation have been developed. To compare our work with existing scheduling algorithms like ACO, PSO, BFO, and ABC has been considered and we have found that the proposal reduces makespan by 2–9% as increased in jobs. Furthermore, the proposed method reduces total energy consumption in data centers by 7–23% as jobs request increases. The findings support the claim that the proposed method surpasses the existing methods and significantly shortens the time needed to determine the resource required for the job.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"42 ","pages":"Article 100985"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000301","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In a cloud computing environment, job scheduling allows the service provider to schedule resources based on demand. Job scheduling must also ensure QoS, end-user satisfaction, and the efficient usage of resources. Cloud computing vendors assign virtualized computing resources to end-users based on job requirements that are dynamically scalable and pay-per-use. The assignment of jobs requires proper investigation and mapping of available resources. In this paper, we have proposed a novel job scheduling scheme based on Rock Hyrax. Our Rock Hyrax approach uses objective functions to map jobs to available resources. The objective function considers a variety of QoS parameters like makespan, response time and energy efficiency. Our method employs two key QoS parameters: makespan and energy consumption. The node behavior and characteristics, such as processing power, storage, and network connectivity to cluster similar resources, have also been considered for scheduling. An experimental setup is created for a thorough study of the proposal using CloudSim simulator. For both the jobs and virtual machines, static and dynamic scenarios for performance evaluation have been developed. To compare our work with existing scheduling algorithms like ACO, PSO, BFO, and ABC has been considered and we have found that the proposal reduces makespan by 2–9% as increased in jobs. Furthermore, the proposed method reduces total energy consumption in data centers by 7–23% as jobs request increases. The findings support the claim that the proposed method surpasses the existing methods and significantly shortens the time needed to determine the resource required for the job.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.