High-frequency high-power DNP/EPR spectrometer operating at 7 T magnetic field

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Alexander A. Nevzorov, Antonin Marek, Sergey Milikisiyants, Alex I. Smirnov
{"title":"High-frequency high-power DNP/EPR spectrometer operating at 7 T magnetic field","authors":"Alexander A. Nevzorov,&nbsp;Antonin Marek,&nbsp;Sergey Milikisiyants,&nbsp;Alex I. Smirnov","doi":"10.1016/j.jmr.2024.107677","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic <em>B</em><sub>1e</sub> fields. Three-pulse electron spin echo nutation experiments were employed to characterize the <em>B</em><sub>1e</sub> fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded &lt; 9 ns π/2 pulses at <em>ca</em>. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of <em>Q</em>≈300. DNP experiments carried out in a “gated” mode by supplying 20 μs mm-wave pulses every 1 ms yielded <sup>13</sup>C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural <sup>13</sup>C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same <sup>13</sup>C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7–14 for <sup>31</sup>P NMR signal were demonstrated using a liquid droplet of 1 M <em>tri</em>-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene‑<em>d</em><sub>8</sub>.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107677"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000612","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic B1e fields. Three-pulse electron spin echo nutation experiments were employed to characterize the B1e fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded < 9 ns π/2 pulses at ca. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of Q≈300. DNP experiments carried out in a “gated” mode by supplying 20 μs mm-wave pulses every 1 ms yielded 13C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural 13C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same 13C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7–14 for 31P NMR signal were demonstrated using a liquid droplet of 1 M tri-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene‑d8.

Abstract Image

在 7 T 磁场下运行的高频大功率 DNP/EPR 光谱仪
开发脉冲动态核偏振(DNP)的最基本前提之一是能够在与现代高分辨率 NMR 光谱仪磁场相对应的电子前驱频率上产生大功率相干毫米波脉冲。作为实现这一目标的重要一步,由通信和电力工业公司定制的、在 197.8 GHz 频率下功率高达 140 W 的扩展交互式速调管(EIK)脉冲放大器与内部制造的、在 7 T 磁场下运行的 NMR/DNP/EPR 光谱仪集成在一起。该光谱仪采用托马斯-基廷(Thomas Keating)有限公司生产的准光桥,将毫米波导入自制的 DNP 探头,该探头包含光子带隙(PBG)谐振器,可进一步增强电子 B1e 场。通过在感应模式下操作同频 198 GHz 电桥,利用三脉冲电子自旋回波归零实验来表征样品处的 B1e 场。使用单晶高压高温(HPHT)金刚石和掺杂了 BDPA 自由基的聚苯乙烯薄膜进行的室温实验产生了约 9 ns π/2 脉冲,在约 50 W 的指定 EIK 输出条件下,样品的 B1e 场为 0.5 ns。在相应的共振频率和 Q≈300 的 PBG 谐振器品质因数下,产生了约 50 W 的指定 EIK 输出的 < 9 ns π/2 脉冲。通过每 1 毫秒提供 20 μs 毫米波脉冲的 "门控 "模式进行 DNP 实验,在天然 13C 丰度下,聚苯乙烯-BDPA 样品的 13C 固体效应 DNP 增益高达 20。对于单晶 HPHT 金刚石,门控 DNP 模式产生的 13C 增益几乎与 0.4 W 的低功率连续波 (CW) 模式相同,而在后一种情况下,BDPA/聚苯乙烯样品没有观察到 DNP 效应。为了说明我们升级后的 DNP 光谱仪的多功能性,使用 1 M 三苯基膦与 100 mM BDPA 在甲苯-d8 中共同溶解的液滴演示了室温下 Overhauser DNP 对 31P NMR 信号 7-14 的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信